音声想起時の脳活動識別のためのデータ拡張手法の検討* ◎矢野 肇,高島遼一,滝口哲也(神戸大),中川誠司(千葉大)

1 はじめに

ブレイン・コンピュータ・インターフェイス(brain computer interface: BCI)は発話や身振りが困難な 身体障害者のための意思伝達手段として研究開発が 盛んに行われている.近年では,自由度の高いコミュ ニケーションが可能な,頭の中で想起した音声を脳活 動から読み取る BCI の研究が注目されている [1].

我々はこれまで, 音声想起時の脳磁図(magnetoencephalography: MEG)を調査し, 機械学習を用い て想起音声の識別を行ってきた [2, 3, 4, 5]. 先行研 究 [3, 4] では, 複雑な識別関数を学習可能な畳み込み ニューラルネットワークが用いられたが, パラメータ 数は古典的な機械学習手法よりも圧倒的に多く, 実用 に耐えうる高い精度を持つ識別器を個人ごとの少ない MEG データを用いて安定して訓練することは容易で はない. 前稿 [5] では, 複数の被験者の MEG データ で訓練した条件付き変分自己符号化器を用いてデータ 拡張を行い, 分類精度を向上させたが, MEG の変動 を再現した多様なデータを生成できたとは言い難い.

近年では, 脳波 (electroencephalography: EEG) データに対してもニューラルネットワークが多く用 いられるようになり, 画像やテキストと比べて非常に データ数が少なく, ノイズの多い EEG データでも安 定してネットワークを訓練するため, 様々なデータ拡 張手法が提案されている [6, 7]. しかしながら, それ らの手法の対象となっている EEG データの多くは, 運動想起や睡眠など比較的多く研究されているタス クに関するものである. 一般的に, タスクごとに有効 なデータ拡張手法は異なり [7], 本研究が対象として いる音声想起タスク, さらには MEG データに対して 有効なデータ拡張手法は未だに明らかではない.

本研究では, 音声想起時の脳活動データの分類精度 を向上させるデータ拡張手法を調査した. 音声想起時 の MEG および EEG が収録された 2 つのデータセッ トに対し, 時間・周波数・空間領域で作用するデータ 拡張手法を適用し, 想起された単語音声の識別をする 軽量なニューラルネットワークモデルを被験者ごとに 訓練した. データ拡張を用いずに訓練したネットワー クとデータ拡張を用いて訓練したネットワークの分 類精度を比較して, 音声想起時の MEG および EEG の分類に有効なデータ拡張手法を検討した.

2 データセット

2.1 MEG データ

先行研究 [2] で収録された音声想起時の MEG デー タを用いた.このデータは8名の被験者(男性7名, 女性1名,20-40歳)の MEG データからなる.被験 者は,3種類の日本語単語("あまぐも","いべん と","うらない")のうちの1つを2回聴取した後, 音声を聞いた通りに想起する試行を繰り返し行う.音 声の持続時間は800 msで,呈示間隔は500 msであっ た.この試行は単語ごとに少なくとも100 回行われ た.試行中の MEG は被験者の頭を覆うように配置 された122 個のセンサで計測された.

計測された MEG の前処理として、サンプリング周 波数が 200 Hz となるようにダウンサンプリングし、 1Hz 以下の低周波成分、1000 fT/cm を超える変動、 及び眼球運動に由来するアーティファクトを除去し た.頻繁に異常な信号が観測された MEG センサの 信号は取り除き、他の正常なセンサの信号を元に補 間した.1回目の音声呈示及び想起のタイミングを基 準に -100-900 ms の信号を音声聴取時及び想起時の MEG として切り出した.最後に、MEG 波形の振幅 を ± 100 fT/cm が ± 1 となるように正規化した.

2.2 EEG データ

Nguyen らが公開している音声想起中の EEG デー タセット [1] から短い 3 種類の英単語("out", "in", "up")を想起した6名の被験者のEEGデータを用い た. このデータの収録では、被験者は視覚呈示された 単語を1秒ごとに5回呈示されるビープ音のタイミ ングで想起し, ビープ音が停止した後も視覚呈示が 止まるまで同じ間隔で単語の想起を続けた. この試 行は単語ごとに 100 回行われた. EEG は 64 または 80 チャネルで計測され, 8-70 Hz の帯域通過フィル タ, 60 Hz のノッチフィルタ, 眼電図のアーティファ クト除去を行った後、サンプリング周波数を1 kHz から 256 Hz にダウンサンプリングされた.本研究で は眼電図用の4 チャネルを除いた 60 または 76 チャ ネルを用いた. 各試行の最後のビープ音の呈示から1 秒ごとに2秒間の EEG を合計3エポック取り出し, それぞれを分類器に入力するデータサンプルとした. 最後に, EEG の振幅を ±100 μV が ±1 となるように 正規化した.

^{*}Data augmentation for imagined speech classification. by YANO, Hajime, TAKASHIMA, Ryôichi, TAKIGUCHI Tetsuya (Kobe Univ.) and NAKAGAWA, Seiji (Chiba Univ.).

3 データ拡張

本研究では, 音声想起時の MEG および EEG デー タに対し, 時間・周波数・チャネル領域でデータ拡張 手法を適用した. 用いた手法は, 睡眠時と運動想起 時の EEG データセットに対して様々なデータ拡張の 有効性を調べた Rommel らの研究 [7] を参考にした. また, 加算平均を用いたデータ拡張手法も検討した. 各領域でのデータ拡張手法について以下に述べる.

3.1 時間領域

3.1.1 符号反転(sign flip)[8]

確率 p で全てのチャネルの信号の符号を反転させる. 脳内の活動源は電流のベクトル場で表され, 観測 信号の符号を全チャネルで反転することは,全ての電 流の向きを反転させることに相当する. このデータ 拡張は活動源の向きが重要でない場合に有効である.

3.1.2 時間軸反転(time reverse)[8]

確率 p で全てのチャネルの信号の時間軸を反転さ せる.信号のフーリエ振幅スペクトルは信号の時間 軸反転に対して不変なため,周波数成分のパワーに 基づく分類では有効である可能性がある.

3.2 ガウスノイズ付加 (Gaussian noise) [9]

各時間サンプルが独立に平均 0,分散 σ² の正規分 布に従うノイズを全てのチャネルの信号に加算する. このデータ拡張によって脳信号に含まれるノイズに 対して頑健なモデルの学習が期待できる.

3.3 加算平均 (averaging)

元の訓練データ内のクラスラベル k が付与された データ数を N_k とする. N_k 個の訓練データからラン ダムに n 個ずつ取り出して平均した波形を新たな訓 練データとする. この操作を新たな訓練データが元 のデータ数の s 倍になるまで繰り返す. なお, モデル の訓練時には元の訓練データは用いない.

聴覚誘発反応や事象関連電位の解析では,外部刺激などのイベントに同期させて計測した脳信号を平均し,位相の揃っていないノイズ成分を打ち消して,目的の信号成分を得ることがしばしば行われる.このデータ拡張によって,モデルがタスクに関連した信号成分を学習し,ノイズへの過学習を防ぐことが期待できる.また,一般的に*N_k*から*n* 個のデータの取り出す組合せの数は膨大であり,多様な訓練データを生成することができる.

3.4 可変加算平均 (variable averaging)

加算平均に用いるデータ数nを段階的に増加させな がら、平均した波形を元の訓練データに追加する.具 体的には、最初はn = 2とし、 N_k 個の訓練データか らランダムにn 個ずつ取り出して平均していき、合計 で $\lfloor N_k/n \rfloor$ 個のデータを追加する.その後、 $n \leftarrow n+1$ とし、同様の操作を $n = n_{\text{max}}$ まで繰り返す.

上述の加算平均のデータ拡張とは異なり,訓練時に 元のデータを用いるため,モデルの推論が評価データ に含まれるノイズの影響を受けにくい可能性がある. また,被験者の状態の変化等でデータの信号対雑音 比が変動しても,*n*を変化させて様々な信号対雑音比 のデータを生成することで対応できる可能性がある.

3.5 周波数領域

3.5.1 周波数シフト (frequency shift) [8]

全てのチャネルの信号のスペクトルを一様分布 $\mathcal{U}(-\Delta f_{\max}, \Delta f_{\max})$ からサンプリングしたランダム な周波数 Δf だけシフトする.各チャネルの信号を x(t),その解析信号を $x_a(t) = x(t) + j\mathcal{H}[x](t)$ とする. ここで $j = \sqrt{-1}$ で, $\mathcal{H}[x](t)$ はx(t)のヒルベルト変 換である.x(t)を周波数シフトした信号 $x_{\text{freqshift}}(t)$ は次のように計算される.

$$x_{\text{freqshift}}(t) = \operatorname{Re}\left[x_a(t) \cdot e^{j2\pi\Delta f \cdot t}\right] \tag{1}$$

ここで, Re[·] は複素数の実部を取り出す演算である. このデータ拡張は,一部の脳信号が持つ特定の周 波数のピークが変動する場合に有効である.

3.5.2 Fourier transform surrogate [10]

フーリエ位相スペクトルを周波数ごとに一様分布 $\mathcal{U}(0, \Delta \phi_{\max})$ からサンプリングしたランダムな位相 $\Delta \phi$ だけシフトする.各周波数における $\Delta \phi$ は全チャ ネルで共通である.各チャネルの信号x(t)のフーリ エ変換を $\mathcal{F}[x](f)$ とすると,位相をランダム化した信 号 $x_{\text{ftsurrogate}}(t)$ のフーリエ変換は次の式で表される.

$$\mathcal{F}[x_{\text{ftsurrogate}}](f) = \mathcal{F}[x](f)e^{j\Delta\phi}$$
 (2)

処理後の時間信号 $x_{\text{ftsurrogate}}(t)$ は式 (2) の逆フーリ エ変換によって得られる.

このデータ拡張によって元の信号と同じ振幅スペ クトルを持つ異なる波形の信号を作ることができる ため,モデルに信号の時間波形よりも周波数成分を重 視するように訓練させることができると考えられる.

3.6 空間領域

3.6.1 チャネル左右反転(channel symmetry) [11]

確率 p で頭の左半球および右半球に配置された全 てのチャネルの信号を頭の正中線に関して対称な位 置にあるチャネルの信号に入れ替える.分類したいタ スクが特定の半球のみに出現する脳活動に関連して いない場合,この手法は有効であると考えられる.

3.6.2 Channel dropout [12]

チャネルごとに確率 p で信号を 0 にする. モデル による予測が特定のチャネルの信号に依存しすぎな いようにすることで,モデルの過学習を抑え,汎化性 能を向上できると考えられる.

4 評価実験

4.1 実験条件

音声想起時の MEG および EEG の分類モデルとし て, EEGNet [13] を被験者ごとに訓練した. EEGNet は一般的な畳み込みの代わりに depthwise separable convolutionを用いた軽量なネットワークであり, デー タ数が少量でも訓練が可能である. EEGNet は時間方 向の畳み込み層, センサ方向の depthwise convolution 層,時間方向の separable convolution 層,及び全結 合層からなる.本研究では, EEGNet の構造を変更 し, separable convolution 層を 2 層にして用いた.

訓練したモデルを 10 分割交差検証によって評価した.評価データセット以外のデータセットの 80%を 訓練データセットに,20%を検証データセットに分 割した.データセットの分割時,MEG データセット では各分割内の試行が時間的に連続するように分割 し,EEG データセットでは各分割内で3つのクラス ラベルの数がそれぞれ等しくなるようにランダムに 分割した.学習されたモデルの評価指標には macro F1 score を用いた.この指標はクラスごとに算出し た F1 score を平均したものである.EEGNet は最大 で 200 エポック訓練し,検証データセットに対して macro F1 score が最大となるモデルを選択した.

加算平均と可変加算平均のデータ拡張は MEG デー タセットのみに適用した.これらの手法は予め訓練 データセット全体に適用され,適用後のデータを集め た新たな訓練データセットがモデルの訓練に用いら れた.その他のデータ拡張手法はデータをモデルに 入力する直前に適用された.Channel dropout によ るデータ拡張は各チャネルの位置が与えられている MEG データセットのみに適用した.

4.2 結果

音声想起時の MEG データにデータ拡張を行って 訓練したモデルの macro F1 score の,データ拡張 を行わなかった場合からの改善量を Table 1 に示す. MEG データに対して多くの被験者で macro F1 score が向上したデータ拡張手法は,時間軸逆転,ガウスノ イズ付加,加算平均, channel dropout であった.一 方で,符号反転,周波数シフトと Fourier transform surrogate は,データ拡張を用いなくとも macro F1 score が高かった被験者 4, 5, 6, 8 のモデルの macro F1 score を大きく低下させた.

音声想起時の EEG データにデータ拡張を行って訓 練したモデルの macro F1 score の,データ拡張を行 わなかった場合からの改善量を Table 2 に示す. EEG データに対して平均的にモデルの macro F1 score を向 上させたデータ拡張手法は,符号反転と Fourier transform surrogate であった.時間軸逆転は被験者 8 の モデルの macro F1 score を大きく低下させたもの の,被験者 3, 5, 6, 12 のモデルの macro F1 score を向上させた. これらのデータ拡張手法を組み合わ せた場合,被験者 8 以外の被験者のモデルの macro F1 score が向上した.一方で,周波数シフトや channel dropout を用いた場合,多くの被験者のモデルで macro F1 score が低下した.

4.3 考察

各データ拡張手法の効果はデータセットおよび被 験者の間で一貫していなかった. データセット間で の違いは主に MEG と EEG の違いによるものである と考えられる. 脳内の活動源で発生した電気信号は, 脳内の組織ごとの電気伝導率の違いから電極で EEG として観測されるまでに拡散し歪む一方で、活動源 における電流が生じさせる磁気的な信号は、組織ご との透磁率が真空の透磁率とほぼ等しいため、ほと んど歪まずに磁気センサで MEG として観測される. このため、MEG と EEG で適切なデータ拡張手法が 異なる可能性がある. 被験者間での違いは音声想起 時の脳活動の個人差によるものと考えられる.特に 時間軸反転は、いずれのデータセットでも分類精度が 向上する被験者と低下する被験者が観察された. 性 能が向上した被験者では音声想起時の脳信号に左右 対称のパターンが出現していた可能性がある.

2つのデータセットに対する結果から、分類精度の 高かった被験者のモデルは、音声想起時に出現した 脳信号の時間波形パターンを学習した可能性が示唆 される.まず,符号反転はいずれのデータセットでも データ拡張を用いない場合に分類精度が比較的高かっ た被験者のモデルの精度を低下させた. このことは, モデルが音声想起時に出現した特定の向きを持った 活動源の波形を学習したことを示唆しており、特に歪 みが少ない MEG データに対する結果にその傾向が 現れたと考えられる.次に,MEG データに対して加 算平均のデータ拡張を適用した場合にモデルの分類 精度が向上したが、可変加算平均を適用した場合には あまり精度向上は見られなかった.いずれの手法も訓 練データ数は元の約3倍であるが,加算平均を適用 した訓練データの方が、試行間で位相同期した成分 が強調されていたと考えられる. さらに, MEG デー タに対して周波数成分ごとの位相のランダム化で分

Subject	1	2	3	4	5	6	7	8	Mean
w/o augmentation	32.5	29.6	31.0	41.1	39.9	38.3	29.4	36.8	34.8
(1) Sign flip $(p = 0.5)$	-2.4	+3.5	+3.7	-11.3	-7.2	-4.6	-2.2	-4.0	-3.1
(2) Time rev. $(p = 0.5)$	+2.2	+4.0	-2.8	-3.1	+0.0	-4.5	+2.7	+5.6	+0.5
(3) Gauss noise ($\sigma = 0.2$)	+3.8	-0.3	+0.7	-2.5	+4.0	-1.9	+2.0	+4.7	+1.3
(4) Ave. $(n = 10, s = 3)$	+3.8	+1.5	-1.0	-0.4	+4.0	-0.9	+6.2	+4.7	+2.2
(5) Var. ave. $(n_{\text{max}} = 10)$	+2.1	-0.4	-1.5	-0.7	-0.8	-2.4	+4.1	+3.1	+0.4
(6) Freq. shift $(f_{\text{max}} = 0.5)$	+2.8	+2.2	+3.4	-10.5	-10.7	-6.7	+4.3	-6.8	-2.7
(7) FT surrogate $(\Delta \phi_{\text{max}} = 2\pi)$	+2.8	+4.5	-2.5	-12.2	-9.0	-6.4	+0.0	-7.8	-3.8
(8) Ch. sym. $(p = 0.5)$	+2.5	-2.3	-1.0	-0.3	-3.9	-0.0	+5.0	+4.1	+0.5
(9) Ch. drop. $(p = 0.4)$	+1.0	+3.3	-0.4	+2.6	+0.6	+0.1	+1.7	+6.9	+2.0
(10) (2)+(3)+(4)+(8)+(9)	-1.8	+4.1	-0.4	-6.3	-5.2	-1.6	+7.4	+3.5	-0.1

Table 1 Amount of the macro F1 score improvement for the MEG dataset

Table 2 Amount of the macro F1 score improvement for the EEG dataset

Subject	1	3	5	6	8	12	Mean
w/o augmentation	35.6	33.4	34.1	34.9	32.4	44.1	35.7
(1) Sign flip $(p = 0.5)$	-1.2	+2.4	+4.4	-1.9	+2.6	-3.2	+0.5
(2) Time rev. $(p = 0.5)$	-1.4	+3.6	+2.2	+1.1	-8.9	+0.1	-0.6
(3) Gauss noise ($\sigma = 0.4$)	-2.5	+0.0	+0.8	-3.2	+0.4	-5.3	-1.6
(4) Freq. shift $(f_{\text{max}} = 0.5)$	-0.4	+4.3	+1.5	-0.2	-3.8	-9.6	-1.4
(5) FT surrogate $(\Delta \phi_{\text{max}} = 2\pi)$	+2.6	+3.1	+4.8	-0.9	-5.1	+1.1	+0.9
(6) Ch. drop. $(p = 0.4)$	-1.1	-1.9	+1.8	-0.5	-0.2	-4.5	-1.1
(7) (1)+(2)+(5)	+1.9	+4.6	+3.6	+1.5	-0.7	+1.1	+2.0

類精度が低下したことは,音声想起時の脳信号の位 相スペクトルが分類に有効であることを示している. 一方で,EEGデータに対しては位相をランダムにし た場合に精度の向上が見られたが,EEGの方が伝播 の過程で位相が歪んでおり,データ拡張による位相 スペクトルへの影響が小さかったためと考えられる. 本研究で用いた周波数シフトのデータ拡張も音声想 起時に出現する脳信号の時間波形を歪めてしまった ために分類精度の低下を引き起こした可能性がある.

Channel dropout は MEG データセットに対しては モデルの分類精度を向上させたが, EEG データセッ トに対しては分類精度を低下させた. EEG データよ りも MEG データの方がより多くのチャネルで計測 されたものであり, 伝播時に波形が歪まないため, 0 にされたチャネルの情報を他のチャネルから補いやす かったと考えられる. このため, MEG データで訓練 されたモデルは channel dropout によって過学習が防 がれ, 性能が向上したと考えられる.

5 おわりに

本研究では、音声想起時の MEG および EEG が収 録された2つのデータセットに対し、時間・周波数・空 間領域で作用するデータ拡張手法を適用し、想起音声 の分類に有効なデータ拡張手法を調査した.その結果、 MEG データでは加算平均と channel dropout を用い たデータ拡張が、EEG データでは Fourier transform surrogate を用いたデータ拡張が分類精度の向上に寄 与した.また,音声想起時の脳信号の位相を保つデー タ拡張手法が想起音声の分類に有効である可能性が 示唆された.

謝辞 本研究の一部は, JSPS 科研費 JP22K18626 の 支援を受けて実施された.

参考文献

- C. H. Nguyen *et al.*, J. Neural Eng., 016002, 2018.
- [2] S. Uzawa et al., IEEE EMBC, 2542–2545, 2017.
- [3] 矢野ら, 音講論(春), 507-510, 2020.
- [4] 山名ら, 音講論(春), 517-520, 2023.
- [5] 矢野ら, 音講論(春), 645-648, 2024.
- [6] C. He *et al.*, Front. Hum. Neurosci., 15, 765525, 2021.
- [7] C. Rommel et al., J. Neural Eng., 066020, 2022.
- [8] C. Rommel et al., ICLR, 2022.
- [9] F. Wang et al., MultiMedia Modeling, 82–93, 2018.
- [10] J. T. C. Schwabedal, et al., arXiv:1806.08675, 2019.
- [11] O. Deiss et al., arXiv:1803.09702, 2018.
- [12] A. Saeed *et al.*, IEEE ICASSP, 1255–1259, 2021.
- [13] V. J. Lawhern *et al.*, J. Neural Eng., 15, 056013, 2018.