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Abstract—Brain computer interfaces based on speech imagery
have attracted attention in recent years as more flexible tools
of machine control and communication. Classifiers of imagined
speech are often trained for each individual due to individual
differences in brain activity. However, the amount of brain
activity data that can be measured from a single person is
often limited, making it difficult to train a model with high
classification accuracy. In this study, to improve the performance
of the classifiers for each individual, we trained variational
autoencoders (VAEs) using magnetoencephalographic (MEG)
data from seven participants during speech imagery. The trained
encoders of VAEs were transferred to EEGNet, which classified
speech imagery MEG data from another participant. We also
trained conditional VAEs to augment the training data for the
classifiers. The results showed that the transfer learning improved
the performance of the classifiers for some participants. Data
augmentation also improved the performance of the classifiers
for most participants. These results indicate that the use of VAE
feature representations learned using MEG data from multiple
individuals can improve the classification accuracy of imagined
speech from a new individual even when a limited amount of
MEG data is available from the new individual.

Index Terms—imagined speech, speech imagery, variational
autoencoder, representation learning, magnetoencephalography

I. INTRODUCTION

Brain computer interfaces (BCIs) have been researched and
developed as tools of machine control and communication for
physically disabled people who have difficulty with speech
and gestures. BCIs based on speech imagery have recently
attracted attention because they enable more flexible machine
control and communication than conventional BCIs based on
event-related potentials or motor imagery [1].

There are many electroencephalographic (EEG) studies on
speech imagery BCI [1]–[4]. Not only classical machine
learning methods, such as the support vector machine, but
also neural networks with a large number of parameters have
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recently been used as classifiers of imagined speech. However,
EEG signals are inherently noisy, and it is difficult to collect
a sufficient amount of EEG data to train neural networks
with high classification performance [3], [4]. In particular,
the classifiers are often trained for each individual due to
individual differences in brain activities, but the amount of
EEG data that can be measured from a single subject is limited
due to the physical and mental burden associated with the
measurements carried out on the subject. On the other hand,
there have been magnetoencephalographic (MEG) studies on
brain activities during speech imagery [5], [6]. MEG signals
are measured in a less noisy environment, have less distortion
during propagation from a signal source to sensors, and have
higher spatial resolution than EEG signals [7]. Therefore,
classifying imagined speech from MEG signals is easier than
from EEG signals, but the amount of MEG data is likely
to be smaller than the amount of EEG data because MEG
measurements are usually large-scale.

In recent years, there have been many studies on repre-
sentation learning using large-scale neural networks. Neural
networks for various tasks using a portion of neural networks
trained only with a large amount of text, speech, or image
data without other labels have showed high performance [8]–
[10]. Unlike such kinds of data, of course, it is difficult to
collect a large amount of brain activity data and to learn feature
representations of brain signals during speech imagery using a
large-scale neural network. However, by using representations
learned from as much brain activity data during different tasks
in different conditions as possible, there is a possibility of
improving the classification accuracy of imagined speech even
when only a small amount of data is available during speech
imagery. Among the representation learning methods, varia-
tional autoencoders (VAEs) [11] can be used with relatively
small network structures and do not necessarily require a
large dataset. VAEs have already been used for classifying
EEG signals during motor imagery [12] and learning subject-
independent EEG representations [13].
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In this study, to improve the classification accuracy of
imagined speech when only a small amount of data is avail-
able from each individual, we used VAEs to learn feature
representations of MEG signals during speech imagery from
multiple individuals. The trained encoders of the VAEs were
transferred to convolutional neural networks (CNNs), which
classified speech imagery MEG data from a new individual
whose data were not used in the VAE training. We also trained
conditional VAEs (CVAEs) [14] to generate MEG data for
the new individual and augment the training data for the
classifiers.

II. MATERIALS AND METHODS

A. MEG Data

We used speech sound imagery MEG data measured in [5].
These data consist of MEG recordings from eight participants
(seven males and one female, 20–40 years old). In each trial
during the MEG measurements, the participants listened to a
speech sound twice and then imagined the speech sound as
they listened to it, without moving their tongue and mouth.
Three speech sounds of three Japanese words—“amagumo”
(rain cloud), “ibento” (event), and “uranai” (fortune-telling)—
were used. The duration of the speech sounds was 800 ms.
The time intervals between the listening and the imagery in
each trial were 500 ms. Three kinds of trials corresponding to
the three words were conducted repeatedly and randomly. The
number of trials for each word and for each participant was at
least 100. MEG signals during the trials were measured using
a 122-channel whole-head neuromagnetometer (Neuromag-
122™, Neuromag, Ltd., Helsinki, Finland) with a sampling
frequency of 400 Hz.

The measured MEG signals were downsampled to a sam-
pling frequency of 200 Hz and digitally filtered to remove low-
frequency components below 1 Hz. Signals from abnormal
MEG sensors were removed and spatially interpolated based
on signals from the other normal sensors. −100–900 ms
signals after the start of the first listening and the imagery
were extracted as MEG epochs during speech listening and
imagery, respectively. MEG epochs that included signals with
the peak-to-peak amplitude above 1000 fT/cm were removed.
Ocular activities were also removed from the MEG signals
using independent component analysis. This preprocessing
was performed by MNE-Python [15].

B. Network Architecture

An overview of the network architectures used in this study
is shown in Fig. 1. VAE or conditional VAE (CVAE) was used
to learn representations of the MEG signals during speech
listening and imagery. EEGNet was used to classify the MEG
data during the speech imagery.

1) EEGNet: EEGNet is a light-weight CNN architecture for
EEG classification that uses depthwise separable convolution
layers instead of ordinary convolution layers [16]. EEGNet
shows competitive performance with ordinary CNNs when a
small amount of training data is available. EEGNet consists
of an ordinary convolution layer on the time axis, a depthwise

convolution layer on the sensor axis, a separable convolution
layer, and a fully connected (FC) layer. In this study, the
architecture of EEGNet was modified to use two separable
convolution layers.

2) Variational Autoencoder (VAE): A VAE consists of an
encoder and a decoder: the encoder outputs the mean µ and
standard deviation σ of the approximate probability distribu-
tion qϕ(z|x) of a latent variable z given an input x, and the
decoder reconstructs x using z sampled from the distribution
qϕ [11]. The encoder and decoder are neural networks, and
their parameters are denoted by ϕ and θ, respectively. The
loss function for training a VAE is as follows:

LVAE=Eqϕ [− log pθ(x|z)]+KL(qϕ(z|x)||p(z))]. (1)

The first term represents the reconstruction error between the
original input x and the reconstructed input x̂. The second
term represents the Kullback-Leibler divergence between the
approximated posterior qϕ and the prior probability distribu-
tion of z, p(z).

In this study, the encoder was composed of the convolutional
layers of EEGNet and two FC layers. The decoder had a
symmetrical structure to the encoder with transposed convo-
lution layers instead of the convolution layers. The number of
dimensions of z was set to 32. The mean squared error loss
was used as the reconstruction error. The prior p(z) was the
multivariate standard normal distribution.

3) Conditional VAE (CVAE): In a CVAE, the approximate
posterior qϕ and the probability distribution of the decoder,
pθ , are further conditioned on the label y corresponding to
the input x [14]. Therefore, a CVAE is composed of the
encoder and decoder of the VAE with an additional class label
input. In this study, the class labels were one-hot encoded, and
were linearly transformed into 4- or 8-dimensional vectors and
combined with the input of the second FC layer of the encoder
and the input of the decoder.

C. Imagined Speech Classification

EEGNet models that classified the MEG during the speech
imagery were trained for each participant. These models
are referred to as “within-participants models.” The trained
within-participants models were evaluated using 10-fold cross-
validation. Each split set of the cross-validation was composed
of successive MEG epochs. The temporally first 80% and
the remaining 20% of the MEG epochs not included in the
evaluation set were used for training and validating the models,
respectively.

EEGNet models were also trained with MEG data from mul-
tiple participants. These models are referred to as “between-
participants models.” The trained between-participants mod-
els were evaluated using leave-one-out cross-validation with
respect to the participant. The temporally first 80% and the
remaining 20% of the MEG epochs not included in the
evaluation set were used for training and validating the models,
respectively.

The macro F1 score was used as the evaluation index for
the trained EEGNet. This index is the average of the F1 scores
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Fig. 1. Overview of the network architectures used in this study.

calculated for each class, i.e. macro-F1 = 1
K

∑K
k=1 F1k. The

F1 score for the class k is defined as F1k = 2TPk/(2TPk +
FPk + FNk) where TPk, FPk, and FNk are the number of
true positives, false positives, and false negatives for the class
k, respectively. The EEGNet models were trained for up to 50
training epochs, and the model with the maximum macro F1
score at the validation was selected and evaluated using the
evaluation set.

D. Transfer Learning
First, VAE models were trained with MEG data during the

speech imagery from multiple participants. The training and
validation data of the VAE models were the same as those
of the between-participants model. Furthermore, MEG data
during the first speech listening and the speech imagery were
used for training the VAE models. Owing to the increase in the
training data, it was expected that better feature representations
of the MEG data would be extracted. The VAE models were
trained for up to 500 training epochs, and the model with the
minimum validation loss was selected.

The convolution layers of the trained VAE model were
transferred to those of an EEGNet model, and the weights of
only the FC layers or all the layers of the EEGNet model were
fine-tuned. The data for fine-tuning, validating, and evaluating
the transfer-learned model were from a target participant
whose data were not used in the training and the validation
of the VAE model, and were split in the same way as the
within-participants model.

Since the transferred layers were trained using the data
from the participants except for the target participant, feature
representations extracted by the transferred layers may not
be suitable for classifying the imagined speech of the target
participant. Therefore, the VAE models were adapted to the
data from the target participant before the transfer.

E. Data Augmentation
CVAE models were trained with MEG data during the

speech imagery from multiple participants except for a target

participant in the same way as the VAE models. The CVAE
models were adapted to the MEG data from the target partici-
pant. The training data from the target participant were fed into
the CVAE models, and one to four times the number of the
training data were generated. The generated data were merged
with the original training data. EEGNet models were trained
using the augmented training data.

III. RESULTS AND DISCUSSION

A. Transfer Learning

Fig. 2 shows the classification results of the EEGNet
transfer-learned from the VAE model trained using the MEG
data only during the speech imagery. The classification per-
formance in six participants was improved when only the FC
layers or the entire network were fine-tuned (w/ trans. (FC FT)
or w/ trans. (entire FT), respectively) in comparison with when
the entire network was trained without the transfer (w/o trans.).
In four of these participants, the classification performance
was further improved by adapting VAE to the data from each
participant before the transfer (w/ adapt. & trans. (FC FT)
or w/ adapt. & trans. (entire FT)). These results indicate that
transfer learning using VAE models trained using MEG data
from multiple participants and adaptation of the VAE models
to a target participant are effective in classifying MEG signals
during speech imagery.

Table I shows the classification results of the between-
participants model. The macro F1 scores of the between-
participants models tended to be slightly higher than those
of the within-participants models. The standard deviation of
the macro F1 scores of the between-participants models was
smaller than that of the within-participants models. This may
be due to the increase in the training data.

Fig. 3 shows the classification results of the EEGNet
transfer-learned from the VAE models that were trained using
the MEG data during both the speech imagery and listening.
Despite the increase in the number of training samples for the
VAE models, there was little improvement in the classification
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Fig. 2. Macro F1 scores of imagined speech classification with transfer
learning using the VAE model trained with only speech imagery MEGs. Each
error bar indicates the standard deviation.

TABLE I
MACRO F1 SCORE OF THE BETWEEN-PARTICIPANTS MODELS FOR

IMAGINED SPEECH CLASSIFICATION

Tartget participant Macro F1 score [%]
1 36.1
2 33.2
3 34.7
4 37.2
5 35.9
6 37.6
7 31.4
8 36.2

Mean ± SD 35.3± 2.1

performance. It is possible that the MEG data during speech
listening negatively affected the feature representations learned
by the VAE models for the imagined speech classification.

To demonstrate the difference in the ease of learning
representations between the MEG data during the speech
imagery and listening, we trained EEGNet models to classify
the MEG data during speech listening, and also conducted
transfer learning from the VAE models trained using the
MEG data during both the speech imagery and listening.
Fig. 4 shows the results of classifying the MEG data during
speech listening. The macro F1 scores were approximately
50%, and were higher than when classifying the MEG data
during the speech imagery. The classification performance was
improved by fine-tuning the entire network after the transfer.
The classification performance was degraded when only the
FC layers were fine-tuned because the feature representations
obtained from the transferred encoder were deviated from
the feature representations of the MEG data from the target
participant, whose data were not used for training the VAE
model.

This explains why the transfer learning from the VAE
model trained using the MEG data during both the speech
imagery and listening did not improve the performance of
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Fig. 3. Macro F1 scores of imagined speech classification with transfer
learning using the VAE model trained with MEGs during speech imagery
and listening to speech. Each error bar indicates the standard deviation.
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Fig. 4. Macro F1 scores of classifications of MEG while listening to speech
with transfer learning. Each error bar indicates the standard deviation.

the imagined speech classification. In the training of the VAE
models, the feature representations of the MEG data during
speech listening may also be easier to be learned than those
of the MEG data during speech imagery. Additionally, the
macro F1 scores of the classification of MEG data during the
speech imagery were lower than those of MEG data during
speech listening, and closer to the chance rate (33.3%). The
MEG activity associated with speech imagery might have
been smaller than the MEG activity associated with speech
listening, and been obscured by background MEG activity,
which could have prevented the EEGNet model from training
sufficiently.

B. Data Augmentation

Fig. 5 shows the classification performance of the EEGNet
with data augmentation. For many participants, the classifi-
cation performance was improved when the data were aug-
mented. There was a tendency for the classification perfor-
mance to improve as the data augmentation factor increased.
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Fig. 6. Examples of an original MEG signal (blue) and MEG signals
reconstructed by the CVAE model (other colors) at a left temporal MEG
channel.

Fig. 6 shows examples of an original MEG signal and MEG
signals reconstructed by the CVAE model. The reconstructed
MEG signals did not have high-frequency components and
showed little variation with sampling. This is likely because,
when the CVAE training was stopped to prevent overfitting, the
decoder had not yet acquired the ability to reconstruct the high-
frequency components. Additionally, the MEG signals contain
many low-frequency components, which may include useful
information for classifying imagined speech. In our study, the
EEGNet was trained with the augmented low-frequency MEG
signals, which were embedded with class-specific features
by the CVAE. This likely enabled the EEGNet to stably
extract the low-frequency features related to speech imagery,
resulting in improved classification performance. Furthermore,
there was no significant improvement in the macro F1 score
when the training data was increased from four to five times.
It is considered that while additional augmentation of low-
frequency MEG data stabilizes the training of the EEGNet,
the improvement of the classification performance eventually
saturates.

IV. CONCLUSION

In this study, we used VAE models to learn feature represen-
tations from the MEG signals of multiple participants during
speech imagery. Transfer learning from the VAE encoders
to EEGNet encoders improved performance of the MEG
signal classification during the speech imagery. The EEGNet
classifiers were also trained using augmented MEG data that
contained samples generated by a conditional VAE model. The
augmentation of the training data improved the classification
performance of the classifiers. These results indicate that
feature representations of MEG data from multiple individuals
learned using VAE models can improve the classification
performance of imagined speech of a new individual even
when a limited amount of data is available from the new
individual.
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