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Abstract. In this work, we investigated a human-in-the-loop approach
along with vision and language models for the effective annotation of
target road images for developing an object detection model at a lim-
ited cost. This work demonstrated that using our method allows for a
reduction in the workload of the dataset construction of a target’s road
damage detection.
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1 Introduction

Road infrastructure monitoring that inspects and diagnoses deteriorating roads
is a crucial challenge. Due to financial constraints and a shortage of personnel,
there is a growing demand for such maintenance to be carried out at a limited
cost. Recent advancements in computer vision have facilitated the automation of
inspection and diagnosis, leading to increased efficiency and stability in opera-
tions [1]. The development of computer vision models requires a labeled dataset
with manual annotation. However, there is a contradiction between the goal of
deep learning to reduce human labor and the fact that a large amount of an-
notation is necessary for model development. To address this contradiction, a
human-in-the-loop approach is being considered. This framework significantly
reduces the human annotation burden, enabling the efficient and continuous
updating of models through iterative processes of training data collection and
parameter updates [2].

Concurrently, numerous studies have been published on vision and language
models that combine computer vision and natural language understanding. Pre-
trained vision and language models with large-scale datasets have been made
publicly available. These models, through the combination of language features
and image features in training, possess zero-shot recognition, enabling them to
even understand images of specific categories without being explicitly trained on
those categories. Furthermore, when using a model with zero-shot recognition
on a particular dataset, further accuracy improvement is expected through fine-
tuning on limited samples (few-shot learning) [3–5].
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The effectiveness of the human-in-the-loop approach depends on the few-shot
ability of the model used. We think that integrating the vision & language model
with high few-shot ability into the human-in-the-loop approach is beneficial, and
we investigated its contributions. We utilized the road infrastructure monitoring
task as a suitable challenge for our approach. In this work, we investigated a
human-in-the-loop approach along with a vision and language model for the
effective annotation of a target road’s images for developing an object detection
model that can be carried out at a limited cost.

2 Related Work

In this work, we utilized the vision and language model GLIP [4] as the baseline
object detection model. GLIP unifies the object detection and phrase grounding
tasks to learn an object-level, language-aware, and semantic-rich visual represen-
tation. GLIP demonstrates high accuracy through fine-tuning on datasets from
various tasks.

Furthermore, the human-in-the-loop concept is also being applied in real-
world situations. Miao et al. have proposed an efficient method to improve the
accuracy of a classification model for wildlife monitoring [2]. Additionally, Ad-
hikari et al. proposed the Iterative Bounding Box Annotation method as an
efficient application of human-in-the-loop for constructing datasets for object
detection models [6]. They propose a semi-automatic method for efficient bound-
ing box annotation. However, they did not evaluate the accuracy when training
on an efficiently constructed dataset.

Arya et al. have provided the RDD2022 dataset for road damage detection.
This dataset consists of 47,420 road images from six countries that serve as
images for road infrastructure monitoring [7]. Information regarding the types
of damage and bounding box annotations is provided for each image. Assuming
that these images are not annotated, the cost of annotating them manually
can be automatically calculated from the information of the ground truth in
the dataset. This work investigates whether Iterative Bounding Box Annotation
can be adapted to practical road damage detection tasks using the vision and
language model GLIP. It also investigates the accuracy of the model when data
collected with efficient methods is used for training.

3 Iterative Bounding Box Annotation Using GLIP

Figure 1 shows the annotation method employed in this work. In the first step,
all unlabeled images are input into GLIP along with the category names to be
detected, producing output for bounding boxes, class labels, and scores. The
second step is sorting the images in the order of annotation and selecting 50
images. Two sorting methods were used: one based on arranging images in the
descending order of the highest detection scores in the image and the other us-
ing a random order. The third step, which follows the procedure of [6], involves
having a human annotator review and manually correct the bounding boxes and



Iterative Annotation with a Vision and Language Model 3

Fig. 1. Method for dataset construction using human-in-the-loop. The loop continues
until annotations are provided for all unlabeled images.

class labels of the selected 50 images. Incorrectly predicted boxes are removed,
wrongly labeled classes are corrected, and new boxes are drawn, if needed. The
corrected images are accumulated as labeled images. The fourth step involves
fine-tuning GLIP using the accumulated labeled images, which were collected
as training data through the corrections made so far. These four steps are re-
peated until annotation is completed for all the images in the unlabeled images.
This method aims to generate a fully-labeled image dataset for object detection
through iterative loops while reducing the workload for a human annotator.

The estimation method for workload is adopted from Adhikari et al.’s ap-
proach [8], following the methodology used in [6]. The workload is equivalent to
#corrections of the following equation.

#additions = (# of true objects)× (1 − recall) (1)

#removals = (# of all detections)× (1 − precision) (2)

#corrections = #additions+#removals (3)

The information from ground truth is compared with the detection results, and a
detection with a partial overlap exceeding 50% (IoU>0.5) is taken as the correct
detection. We estimate the workload from the above equations.

4 Results of Annotation and Road Damage Detection

4.1 Effectiveness of Iterative Annotation

Figure 2 shows the progression of our method’s experiments on 1,000 images of
the RDD2022 Japan dataset using the GLIP-Large model. We used 1,000 im-
ages from the RDD2022 Japan dataset for annotation purposes, 1,313 images
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for validation, and 1,313 images for evaluation which were not used in train-
ing and validation. The blue circle and the green star represent the amount of
ground truth and manual correction in terms of numbers of bounding boxes as a
function of the number of images, respectively. The left graph shows the results
of annotations conducted in the order in which images were randomly shuffled
from the dataset. On the other hand, the right graph shows the results of an-
notations performed in a descending order of rearranging images based on the
highest score predicted by the detection model for each image. Both show that
the workload has been reduced using our method.

Fig. 2. An example of the effect of the order of iterative annotation. The figures show
the cumulative number of ground truth boxes and the manual corrections required in
the dataset. These numbers are equivalent to workload. The images are annotated by
sorting them in random order (left) and in the descending order of the highest detection
scores in the image (right). Workload reduction is better when sorted in the descending
order of the highest detection scores in the image.

Table 1 shows the workload reduction for annotations averaged over three
trials. Both methods effectively reduced the workload, but it was demonstrated
that the approach of checking detections in the descending order of scores is
superior. This might be because, from an early iteration, the boxes to be detected
were more likely to be correct. Additionally, using instances of false positives at
high scores as negative examples during training might have played a crucial
role. As a result, the detection model improved its performance over subsequent
iterations, leading to more accurate detections. In this experiment, we utilized a
labeled dataset, and among the 1,000 images annotated this time, only 27 images
did not contain any damage.

However, considering practical scenarios, such as checking long-duration
videos where many frames do not contain any damage, it becomes necessary
to inspect numerous images without damage to confirm if there is some dam-
age. In such situations, confirming images input to GLIP in descending order of
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Table 1. Comparison of workload and workload reduction [%] using iterative annota-
tion.

workload workload reduction

Manual 2, 410 -

Iterative (random) 2, 217.33 7.99

Iterative (sorted) 2, 096.67 13.00

scores allows for the early acquisition of damage information, potentially leading
to improved accuracy. Therefore, in practical scenarios, it is conceivable that the
advantages of confirming in descending score order could be more pronounced.

4.2 Accuracy Using the Human-in-the-Loop Approach

Table 2 shows the Average Precision (AP) achieved when training with data
collected using each approach. There is no significant difference in AP when
using manually collected data for training with any approach. We found there
is validity in utilizing data collected using the human-in-the-loop approach for
model training. The high AP for Manhole Cover and Crosswalk Blur can be
attributed to the consistent shapes and features present in almost every image.
On the other hand, the lower AP for Crack types may be due to variations in
length and depth across different images. The training data consisting of 1,000
images might not be sufficient to thoroughly capture these diverse characteristics,
leading to lower accuracy in the detection of Crack types.

Table 2. Comparison of Average Precision (AP) [%] in detection using GLIP trained
on 1,000 annotated images. (AC = Alligator Crack, WLB = White Line Blur, PH =
Pothole, LC = Longitudinal Crack, MC = Manhole Cover, TC = Transverse Crack,
CB = Crosswalk Blur)

AC WLB PH LC MC TC CB mean

Manual 60.15 63.37 53.07 42.04 83.15 40.80 84.25 60.98

Iterative (random) 60.90 61.92 51.53 43.00 81.28 43.16 82.31 60.59

Iterative (sorted) 60.91 62.01 51.89 42.66 82.28 41.99 83.54 60.75

Figure 3 shows detection examples. The left image shows two detections
where both position and class are accurately predicted. The center image shows
an example where the damage location is correct, but the classification is in-
correct. The right image shows an issue with position detection. The detection
results are indicated by blue boxes, and the ground truth is represented by or-
ange boxes. A human annotator needs to remove the blue box and add the orange
box.
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Fig. 3. Example of detection results using GLIP trained by iterative annotation. The
left image shows the correct detection and classification of a manhole cover and an
alligator crack, with both position and class accurately predicted. The center image
shows a case where the damage location is correct, but the classification is incorrect.
Although predicted as an Alligator Crack, it is a Longitudinal Crack. The right image
shows an issue with position detection and classification. The correct prediction should
be a Transverse Crack at the orange position (lower right). All images are in RDD2022
Japan dataset [7].

Following the approach of Adhikari et al. [8] and using the label information
in the dataset, we calculated the workload for box corrections. The iterative
bounding box annotation using GLIP demonstrated its contribution to reducing
the workload in constructing datasets for road damage detection. Additionally,
it was found that confirming detections in descending order of scores is superior
to confirming them in random order.

5 Conclusions

This work demonstrated that using human-in-the-loop and a vision-language
model allows for a reduction in the workload of dataset construction. Through
a comparative experiment on the order of image confirmation, it was found that
the approach utilizing scores output by the model is superior. This will prove
useful in developing object detection models for target roads at a limited cost.
Furthermore, it was shown that using reduced workload data as training data
does not result in a change in accuracy compared to fully manually annotated
data.

In the future, when adopting this method for constructing datasets in ac-
tual infrastructure monitoring, we need to investigate the extent to which it
contributes to reducing the workload for human annotators. Additionally, it is
essential to explore efficient methodologies considering factors such as the con-
tribution to larger dataset construction when increasing the number of images
from 1,000, the number of images to be confirmed in each correction, and the
training time and computational costs of the model.

Our final goal is to propose a system for developing an efficient and highly-
accurate road damage detection model. We will also investigate methods to
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enhance the model’s accuracy while minimizing annotation costs. This will in-
volve careful consideration of data labeling within road images to contribute to
accuracy improvement, with a focus on the selection of the type of damage that
requires annotation.
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