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Abstract

The estimation of current sources in the brain from magne-
toencephalogram (MEG) or electroencephalogram (EEG) is
generally an underdetermined problem. Many conventional
methods uniquely estimate the current source by explicitly
assigning a prior distribution of current sources. In our pre-
vious work, we proposed a method for solving the MEG in-
verse problem using an implicit prior of an untrained convo-
lutional neural network (CNN), which is called Deep Prior,
and showed that the CNNs can represent the prior distribu-
tion of current sources. However, MEG measurement re-
quires large-scale equipment and it is desirable to estimate
the current source from EEGs, which can be measured more
easily. In this paper, we propose a method to estimate cur-
rent sources from EEGs using Deep Prior, and show that it is
more accurate than the conventional methods. We also show
that linearizing the network structure improves the localiza-
tion accuracy.

1. Introduction

Magnetoencephalogram (MEG) and electroencephalo-
gram(EEG) are non-invasive measurements of human brain
activities that provide excellent temporal resolution. The es-
timation of current sources in the brain using MEG and EEG
has helped to elucidate brain function and assist in the di-
agnosis of brain diseases. However, estimating the current
distribution in the brain is inherently difficult because it is an
underdetermined problem with a small number of MEG/EEG
sensors relative to the number of current source parameters.

Conventional methods for current source estimation,
such as minimum norm estimation (MNE) [1] and stan-
dardized low-resolution brain electromagnetic tomography
(sLORETA) [2], solve this problem by explicitly giving the
prior distribution of the current source. However, it is difficult
to obtain the prior distribution of the actual current sources,
and estimation based on an incorrect prior distribution may

result in a large error.
In recent years, deep convolutional neural networks

(CNNs) have been shown to play a role in the prior distri-
bution of natural images. This implicit image prior is called
Deep Image Prior and has been shown to be effective for in-
verse problems in the image field [3]. In our previous work
[4], we proposed a method for solving the MEG inverse prob-
lem using an implicit prior of an untrained CNN (Deep Prior),
and showed that the CNNs can represent the prior distribution
of current sources. However, MEG measurement requires
large-scale equipment and it is desirable to estimate the cur-
rent source from EEGs, which can be measured more easily.

In this paper, we propose a method to estimate current
sources from EEGs using Deep Prior, and show that it is more
accurate than the conventional methods. We also show that
linearizing the network structure improves the localization ac-
curacy. In recent years, an implicit bias of gradient descent on
deep linear neural networks has been shown [5]. Therefore,
linearization can be effective in the estimation of the current
sources.

2. Formulation of Current Source Estimation

2.1 MEG/EEG Forward Problem

Finding the magnetic field or electric potential observed by
sensors when current sources in the brain are given is called a
“ forward problem”. In this work, by discretizing a given re-
gion in the brain and fixing the position of the current source
on the mesh point, the magnetic field or electric potential
v ∈ RM observed by the sensor can be expressed in the form
of the product of the lead field matrix L and the current vector
q ∈ R3N :

v = Lq (1)

where M is the number of sensors and N is the number of
mesh points. The lead field matrix L is given by numeri-
cal calculation, such as the boundary element method, using
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magnetic resonance imaging (MRI) data, which is based on
the position of the sensor, the position of the mesh point, and
the conductivity in the brain.

2.2 MEG/EEG Inverse Problem

The inverse of a forward problem is finding the current
source in the brain from the observed magnetic field or elec-
tric potential containing noise. This is commonly referred to
as an “inverse problem”. When the brain is discretized, the
number of current sources becomes very large compared to
the number of sensors. This makes it difficult to uniquely ob-
tain the current source from the observed magnetic field or
electric potential. This is also called an “ill-posed problem”.

Conventional methods, such as MNE and sLORETA, as-
sume the multivariate normal distribution for the prior distri-
bution of noise and current sources contained in the observed
values, and minimize the sum of the error and the regular-
ization term between the forward problem and the observed
value vobs. It gives us an estimation q̂:

q̂ = argmin
q

EC(Lq;vobs) + λq⊤S−1q (2)

= SL⊤(LSL⊤ + λC)−1vobs (3)

where S is the covariance matrix of the parameters of the
current source, and C is the covariance matrix of the noise
in the sensor. However, it is difficult to obtain the probability
distribution of the actual current source, and an estimation
based on a prior distribution that differs from the actual one
may result in a large error.

3. EEG current source estimation using Deep Prior

Figure 1 shows the overview of the EEG current source es-
timation using Deep Prior. When carrying out current source
estimation using Deep Prior, the current q is generated by
neural network fϕ(z) with the latent variable z as input, and
the network parameters ϕ are estimated so that the observa-
tion error is minimized. In our method, q in (2) is replaced
by the output fϕ(z) of the neural networks. The solution of
the current source estimation using Deep Prior is as follows:

ϕ̂ = argmin
ϕ

|vobs −Lfϕ(z)|22 (4)

q̂ = fϕ̂(z) (5)

where each element of the latent variable z is sampled from
the multivariate standard normal distribution. This method
requires only a noisy EEG observation vobs at a single time
point. The network parameters ϕ are randomly initialized.
The updating of ϕ was stopped before Lfϕ(z) is fitted to the
observed noise.

In order to suppress the spread of the predicted current
source, the hard shrinkage function H(x) was used in the fi-
nal layer of the network fϕ(z).

H(x) =

{
x (|x| ≥ T )

0 (|x| < T )
(6)

where T is threshold of 25 % of the maximum value.
The size of the final layer of the network corresponds to

the arrangement of mesh points. The number of channels in
the final layer was set to 3 corresponding to the x, y, and z
components of the current source vectors. From the output of
the final layer, the components of the current vector only in
the brain region were extracted and used as the final output of
the network.

Figure 1: EEG current source estimation in the brain using
Deep Prior

4. Evaluation experiment

Current source estimation was performed on artificially
generated EEG data. A head model of a subject and the set-
tings of an EEG system in the MNE-Python sample dataset
[6] were used as the simulation environment. The EEG mea-
surement system has a total of 60 sensors. A current dipole
source was placed in the center of the primary auditory cortex
of the right hemisphere (rA1) or the primary somatosensory
cortex of the right hemisphere (rS1) in the brain. Multivari-
ate Gaussian noises were added to the EEG signals generated
from the current dipole. The signal-to-noise ratio (SNR) was
set at 20, 5, 2, and 0 dB.

Since the current distribution estimated by the Deep Prior-
based method is not unique due to the nonlinear optimization
of ϕ, 20 current distributions estimated with different initial
parameters of ϕ from each other were averaged. The number
of the parameter updates for each estimation was less than
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or equal to 100. To investigate the effects of the network ar-
chitecture on current estimation, a linear U-Net architecture
without activation functions and a nonlinear U-Net architec-
ture with activation functions were used.

The performance of the current estimation using Deep
Prior was evaluated on the localization error of the current
dipole, and the results were compared to conventional meth-
ods, MNE and sLORETA. MNE and sLORETA were imple-
mented by MNE-Python. The localization error was defined
as the Euclidean distance between the actual test source and
the estimated location of the maximum amplitude in the esti-
mated current source distribution. The average values of 10
estimations for each method were compared.

5. Results and Discussion

The electric potential distributions on the sensors for the
dipole source in the rA1 after 10, 100, 300, and 500 param-
eter updates are shown in Figure 2, where ‘True’ is the dis-
tribution of sensor observation without noise, and ‘Observa-
tion’ is the distribution of sensor observation given to the es-
timation. When the number of parameter updates was 500,
the loss function decreases continuously. The distribution of
the estimated sensor observation at the 100th parameter up-
date is close to the distribution of the observation without
noise, even though the observed values with 0 dB of noise
superimposed on them were trained as a training data. As
the number of iterations increases, the distribution of the esti-
mated sensor output approaches the distribution of the noisy
observation. This indicates a denoising effect of Deep Prior:
low-frequency components included in the signal are learned
first, and high-frequency components included in the noise
are learned later. Although the loss function continues to de-
crease, the true signal can be estimated by stopping the learn-
ing process on the way to local minima.

Table 1 shows the localization error of the current source
position estimated from the EEG when the current source is
placed in the rA1. The localization error of the proposed
method is less than that of MNE and sLORETA, even when
the SNR is varied. The performance of the current source
estimation using Deep Prior with the linear U-Net architec-
ture was more accurate than the performance of the current
source estimation using Deep Prior with the nonlinear U-Net
architecture.

The estimated current distributions are shown in Figure 3,
where the actual current source was placed in the rA1.
As shown in Figure 3, the current distributions estimated
by MNE and sLORETA were spread out and distributed
throughout the brain. On the other hand, the current distri-
bution estimated by the proposed method was a narrow dis-
tribution centered on the actual current source location.

Figure 2: Observed EEG sensor at rA1 for each number of
parameter updates

Table 1: Localization error of the current dipole in the rA1

Method Localization Error [mm]
20 dB 5 dB 2 dB 0dB

MNE 45.3 44.4 46.4 52.4
sLORETA 17.9 27.1 38.5 38.2

Ours (Linear
U-Net) 10.0 13.3 16.1 21.6

Ours (Nonlinear
U-Net) 12.0 16.8 22.5 27.9

Table 2: Localization error of the current dipole in the rS1

Method Localization Error [mm]
20 dB 5 dB 2 dB 0dB

MNE 21.5 21.5 21.3 34.9
sLORETA 13.5 13.5 14.0 13.5

Ours (Linear
U-Net) 9.1 9.1 10.3 11.5

Ours (Nonlinear
U-Net) 11.8 10.3 10.5 12.4
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Table 2 shows the localization error of the current source
position estimated from the EEG when the current source is
placed in the rS1. The position error of the proposed method,
as well as rA1, is less than that of MNE and sLORETA, even
when the SNR is varied.

The performance of the current source estimation when us-
ing Deep Prior with the linear U-Net architecture was also
more accurate than the performance of the current source es-
timation using Deep Prior with the nonlinear U-Net architec-
ture. In general, nonlinear activation functions are used in
CNNs for image generation tasks. However, the current dis-
tribution assumed in this study does not necessarily have a
complex structure like a natural image, and the linear struc-
ture may be adequate for modeling current density in the
brain. In addition, optimizing linear multilayer neural net-
works through gradient descent leads to a low-rank solution
[5]. The property is known as implicit regularization or im-
plicit bias. The bias may have facilitated learning of low-rank
solutions that include the signal, and improved the accuracy
of current source estimation.

Figure 3: Estimated current sources from EEG generated by
the current dipole in the rA1

6. Conclusions

In this work, we proposed an EEG source estimation
method using Deep Prior. EEG data are easier to measure
than MEG data. In our experiments, the EEG data synthe-
sized by assuming a signal current source in the rA1 and the
rS1 were used, and the results showed that the localization
error was reduced and the current source was able to be bet-
ter estimated around the true position compared to the con-
ventional methods, MNE and sLORETA. Furthermore, we
showed that using a linear U-Net structure without activation
functions can provide better position estimation with fewer
errors than the other methods due to the implicit regulariza-
tion bias. Moreover, the denoising effect of Deep Prior was
shown to restore a noise-free signal from a noisy observation.

Although the proposed method can estimate current
sources from only a noisy observation, it requires a subject’s
head structure data, such as an MRI, to obtain a lead field
matrix. The MRI measurements are time-consuming and bur-
densome for the subject. To readily estimate current sources
in the brain, an estimation method without MRI data is de-
sired.
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