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1 Introduction

Emotional voice conversion (EVC) is a technique

for transforming the emotional state of a given

utterance while keeping linguistic information and

speaker identity unchanged. This technique can be

used in a variety of real-world applications, includ-

ing voice assistants, conversational agents, sound

design as well as other entertainment applications.

[1, 2].

Existing EVCmethods can be roughly categorized

into two types based on the use of training data.

Early works [3, 4] mainly focused on using aligned

parallel data, i.e., any speech pairs from source and

target speakers share the same linguistic content

and are aligned in the temporal dimension. How-

ever, these data were difficult to collect and time-

consuming to align. The restricted corpus avail-

ability limits the performance and generalizability

of speech conversion.

These limitations have motivated research to ex-

plore non-parallel EVC approaches [5, 6, 7, 8, 12,

13]. An appealing solution to this problem is

based on generative adversarial networks (GANs)

[9]. Zhou et al. [5] proposed an EVC method

based on CycleGAN [10], to model the spectrum and

prosody mapping between source speech and target

speech. This has been widely acknowledged as an

effective way to achieve one-to-one conversion with

non-parallel data. However, using only one model to

achieve many-to-many conversions is more attrac-

tive for a wide range of applications. Inspired by

StarGAN [11], Rizos et al. proposed StarGAN-EVC

[6] to train the spectral mapping between multiple

emotional domains as an improvement. Recently,

several studies [7, 8, 12, 13] based on speech rep-

resentation disentanglement have attempted to de-

compose the speech into different representations.

These methods can easily achieve emotional voice

conversion by simply replacing the emotion-related

representations. Gao et al. [7] proposed a non-

parallel EVC approach based on style transfer au-
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toencoders, which consists of two encoders and de-

coder for each emotion domain. To use a limited

amount of emotional speech data for unseen speak-

ers, Zhou et al. [8] proposed a two-stage training

strategy and used the corresponding phoneme tran-

scription to guide the disentanglement of the emo-

tional style and linguistic content. Choi et al. [12]

used an emotion encoder and an additional speaker

encoder to utilize various emotional characteristics

of multiple speakers.

The above-mentioned methods can transfer the

emotion states in non-parallel setting. However,

these methods only learn an average representation

or extract a fixed-length vector for each emotional

style. It is a straightforward way to obtain the emo-

tion information, but only global-level emotion in-

formation can be learned. Therefore, there still re-

mains a gap between the converted speech and the

real target in terms of quality and emotion fidelity.

In this paper, we present a novel EVC model,

which can sufficiently learn the emotion information

in both global-level and local-level. Since speech sig-

nals dynamically change in time, some parts of emo-

tion information also would change in time. And si-

lence parts of the signals, which hardly convey emo-

tion information, should be treated differently. Un-

like the previous studies, it assumes that the emo-

tional style is dynamic and time-varying relevant to

linguistic content in our study. Therefore, instead

of only using a fixed-length vector to represent the

global-level emotion information of the whole utter-

ance, the local-level emotion information should rely

on single phoneme content and change with time.

For local-level emotion information, a novel content-

style fusion block is proposed to implement the im-

plicit alignment for emotion and phoneme content,

further embedding the phoneme-level emotion rep-

resentation. For global-level emotion information,

we embed the complete set of time steps of speech

emotion into a fixed-length vector to obtain the

sentence-level emotion representation.
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Fig. 1 The generator architecture of the proposed model. X1 and X2 indicate the mel-spectrogram of

source and target speech respectively. IN is instance normalization.

2 Proposed method

2.1 Framework Overview

The proposed method employs an autoencoder

framework with an adversarial training strategy [9]

to disentangle the emotion information from the

content information of each input speech into sep-

arated representation spaces. During the adversar-

ial training procedure, we utilize the autoencoder

framework as the GAN generator, which aims to fool

the discriminator by generating high-quality and re-

alistic audio signals. Figure 1 shows the genera-

tor architecture of the proposed model. The gen-

erator is an autoencoder framework in our work,

which consists of four modules: a content encoder

Ec(·), a style encoder Es(·), a　 content-style fusion

block CSFB(·, ·), and a decoder De(·, ·, ·). Here,

the content-style fusion block CSFB(·, ·) is com-

posed of a cross attention module and a dynamic

normalization module [14], which will be described

in detail in Section 2.2. The generator is composed

entirely of convolution neural networks to achieve

non-autoregressive generation. Unlike the genera-

tor, the discriminator is constructed with 2d convo-

lution layers like [6] to better capture the acoustic

texture.

The content encoder Ec(·) is used to extract the

content representation Fc from the mel-spectrogram

X1 of source speech. The style encoder Es(·) ex-

tracts the emotion representation Fs from the mel-

spectrogram X2 of target speech. Then the content-

style fusion block CSFB(·, ·) can generate content-

dependent emotion representation F̂cs. Finally, the

decoder De(·, ·, ·) will takes the content representa-

tion Fc, the phoneme-level emotion representation

F̂cs and the averaged sentence-level emotion repre-

sentation F̄s as inputs, and then it synthesizes the

converted mel-spectrogram X1→2 which only trans-

fers the source emotion state to the target one.

The whole conversion process can be formulated

as follows:

Fc = Ec (X1) , Fs = Es (X2) ,

F̄s = AvgPool (Fs) , F̂cs = CSFB (Fc, Fcs) ,

X1→2 = De

(
Fc, F̂cs, F̄s

)
,

(1)

where X1 and X2 are the source and target speech

respectively. To fuse the global-level emotion fea-

ture F̄s, we first use AvgPooling layer for different

length utterances to obtain fixed-length representa-

tions, and then feed it into several linear transfor-

mations. The local-level emotion feature F̂cs is the

all time step for the output feature and its length is

the same as Fc.

2.2 Content-style Fusion Block

The detailed structure of our proposed content-

style fusion block is illustrated in Figure 2. As

shown in this figure, the content-style fusion block

is built with a cross attention module followed by a

dynamic normalization module [14].

The speech signal can be considered a compo-

sition of content information and emotion infor-

mation in EVC task. Moreover, there is a rich

and subtle variation of emotions in human speech.

Therefore, in order to generate a more natural emo-

tional voice, global-level and local-level emotion in-

formation should be considered simultaneously. The

global-level emotion information can be extracted

by encoding the whole utterance into a fixed-length

vector. For local-level emotion information, instead

of only using a fixed-length vector to represent the

global-level emotion information of the whole utter-

ance, the local-level emotion information should rely

on single phoneme content and change with time.
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Fig. 2 Detailed structure of the proposed content-style fusion block, which is composed of a cross attention

module and a dynamic normalization module.

Let Fs denote the emotion representation of target

speech and it should depend on the source content

representation Fc. First, the input features are nor-

malized and transformed linearly, giving Query(Fc),

Key(Fs) and V alue(Fs) respectively. Then we

use Query(Fc) and Key(Fs) to calculate attention

heatmap by aligning different phonemic speech con-

tent. Then we exploit a dynamic normalization

module [14] to further improve the performance. Fi-

nally we can obtain the corresponding emotion fea-

ture F̂cs which depends on Fc in the dynamic nor-

malization module. Our content-style fusion block

can appropriately embed an emotion feature which

depends on the content information for another

phoneme.

2.3 Objective Function

The training losses for the proposed method are

described in this section.

Reconstruction loss: A reconstruction loss

LREC is calculated between the reconstructed mel-

spectrogram and ground truth, which is adopted to

generate reasonable speech using disentangled rep-

resentations.

Lrec = ∥X1→1 −X1∥1 (2)

Adversarial loss: The adversarial loss is used

to encourages the generator to generate realistic

speech.

Ladv = E[logD (X2) + log (1−D (X1→2))] (3)

Content loss: The content loss is used to preserve

the linguistic content of the input speech.

Lc = ∥Ec (X1→2)− Ec (X1)∥1 (4)

Style loss: The style loss is used for better emotion

state transferring.

Ls = ∥CSFB (Ec (X1→2) , Es (X1→2))

− CSFB (Ec (X1) , Es (X2)) ∥1
(5)

The full objective function can be summarized as

follows:

Lfull = Ladv + λcLc + λsLs + λrecLrec (6)

where λc, λs, and λrec are trade-off parameters.

3 Experiments

3.1 Experimental Conditions

We evaluated the proposed model with the Emo-

tion Spseech Dataset (ESD) [13]. In this paper, we

only consider four emotional categories of them: an-

gry, happy, neutral, sad. We set the three datasets

into the following: neutral to happy voice, neutral

to angry voice, and neutral to sad voice. Train-

ing and testing sets are non-overlapping utterances

randomly selected from the same speaker (300 ut-

terances for training, 50 utterances for testing). We

use MelGAN vocoder to generate audio waveforms

from converted mel-spectrogram.

3.2 Objective Evaluations

In this paper, two comparative methods,

StarGAN-EVC[6] and Atuo-EVC [7], were adopted

for performance comparisons. Mel Cepstral Distor-

tion (MCD) is used for the objective evaluation of

spectral conversion. Moreover, Root Mean Square

Error (RMSE) is used to evaluate the F0 conver-

sion. For both MCD and F0-RMSE, a lower value

indicates a smaller distortion or predicting error.
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Figure 3 and Figure 4 show the MCD and F0-

RMSE results from the neutral to emotional pairs

respectively. Here, N2A, N2S, N2H represent the

datasets neutral to angry voice, neutral to sad voice

and neutral to happy voice, respectively. We can see

that the proposed method can obtain good results

in spectral and F0 conversion. Through the objec-

tive experiments, we empirically confirm that the

proposed method effectively brings the converted

acoustic feature sequence closer to the target one

than comparative methods.

Fig. 3 MCD results for different emotions.

Fig. 4 F0-RMSE results for different emotions.

4 Conclusions

In this paper, we propose an emotional voice con-

version framework with a novel content-style fusion

block for rearranging the emotional style distribu-

tion. The proposed model can sufficiently learn the

emotion information in both global-level and local-

level. The experimental results show the effective-

ness of our proposed method.
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