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1 Introduction

The human speech is a complex signal that con-

tains rich information. A listener perceives not

only linguistic information from a speech but also

speaker identity, emotional information, etc. Emo-

tional voice conversion (EVC) is the task of con-

verting speech from one emotion state into another

one while keeping the linguistic information and

speaker identity unchanged. It is an enabling tech-

nique for many real-world applications, such as voice

assistants, conversational agents and sound design

[1] [2]. Therefore, there has been tremendous active

research in EVC recently.

Many statistical approaches have been proposed

for EVC in the past few decades. Among these

approaches, a Gaussian Mixture Model (GMM)

has been commonly used, and many improvements

have been proposed [6] for GMM-based EVC.

Other EVC methods, such as those based on non-

negative matrix factorization (NMF) [7], have also

been proposed. Meanwhile, some deep learning

approaches construct nonlinear mapping relation-

ships using neural networks (NNs) to train the map-

ping dictionaries between the source and target fea-

tures [8], whereas others use deep belief networks

(DBNs) to achieve non-linear deep transformation

[9]. While these methods have demonstrated their

effectiveness, they require accurately-aligned paral-

lel data. Collecting parallel data and aligning the

source and target utterances can be costly and time-

consuming.

There have been studies on deep learning ap-

proaches for EVC that do not require parallel train-

ing data, such as CycleGAN-based [12], StarGAN-

based [5] and autoencoder-based [13] frameworks.

These works are inspiring, but there still remains a

gap between the converted speech and the real tar-

get in terms of quality and emotion fidelity. In many

EVC systems, it is assumed that the linguistic con-

tent is dynamic and time-varying while the emotion
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information is static and time-independent. There-

fore the emotion representation is often modeled as

a fixed-size vector. This would be a reasonable mod-

eling strategy. However, only using fixed-size repre-

sentation of the emotion by an utterance has two

issues to be considered. First, since speech signals

dynamically change in time, some parts of emotion

information also would change in time. Consid-

ered the differences of mechanisms of speech pro-

duction, vowels and consonants would convey dif-

ferent aspects of emotion information. From a view

point of applications, silence parts of the signals,

which hardly convey emotion information, should be

treated differently. Second, only using a fixed-size

vector as emotion representation causes a loss of in-

formation, and rich emotion information in speech

would be compressed into a predefined capacity.

With consideration for these issues, we propose to

use time-varying emotion representation for EVC.

For extraction of the time-varying emotion informa-

tion, the functions of content and emotion extrac-

tors should interlock each other. The novel fea-

ture of the proposed is to simultaneously embed

sentence-level and phoneme-level emotion informa-

tion. To achieve the concept, we adopt an attention

mechanism for implementing time varying emotion

representation. Thus, a novel attention module is

proposed to implement the implicit alignment for

emotion and phoneme content, further embedding a

phoneme-level emotion representation. In addition,

we consider embedding the complete set of time

steps of speech emotion into a fixed-length vector to

obtain the sentence-level emotion representation. If

we are able to disentangle emotion information from

linguistic content information, we can change the

emotion state independently of the linguistic con-

tent. It should be noted that the proposed method

does not require any pre-trained models, and is only

trained with non-parallel speech data.
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Fig. 1 The generator architecture of the proposed model. X1 and X2 indicate the mel-spectrogram of

source and target speech respectively. IN is instance normalization.

2 Proposed method

2.1 Model Architecture

We propose a GAN-based [3] to have better gen-

eralization on the converted speech. The effective-

ness of GANs is due to the fact that an adversarial

loss forces the generated data to be indistinguishable

from real data. The generator is used to generate

converted speech while the discriminator is adopted

to distinguish real samples from machine-generated

samples. As show in Figure 1, the generator is an

encoder-decoder module in our work. The genera-

tor consists of four modules, a content encoder Ec(·),
a style encoder Es(·), an attention module Att(·, ·)
and a decoder De(·, ·, ·). The generator is made up

entirely of convolution layers in order to operate in

a non-autoregressive generative manner.

In the conversion process, the content encoder

Ec(·) captures the linguistic content information C1

from the mel-spectrogram X1 of source speech. The

style encoder Es(·) is adopted to produce an emo-

tion representation S2 from the mel-spectrogram X2

of target speech. Then the attention module Att(·, ·)
can generate content-dependent emotion informa-

tion Ŝ2, which will be explained in details in Sec-

tion 2.2. Finally, the decoder De(·, ·, ·) will takes

the content embedding C1, the phoneme-level emo-

tion representation Ŝ2 and the averaged sentence-

level emotion representation S2 as inputs, and then

it synthesizes the converted mel-spectrogram X1→2

which only transfers the source emotion state to the

target one.

The Es(·) is built with stacks of convolutional lay-

ers followed an average pooling for downsampling.

The content encoder Ec is adopted to predict rea-

sonable linguistic representation. Ec(·) is composed

of convolution layers. In addition, we adopt Instance

normalization (IN) after each convolution layer of

the content encoder to eliminate emotion informa-

tion. A PixelShuffle layer is used in De(·, ·, ·) for

upsampling. Unlike the generator, the discrimina-

tor is constructed with 2d convolution layers like [4]

to better capture the acoustic texture.

2.2 Attention Mechanism

To obtain phoneme-level emotion information, the

key idea is an attention mechanism relating emotion

to content. Our approach assumes that the emotion

information is related to content, so instead of only

using a fixed-length vector to represent the emo-

tion of the whole utterance, the emotion information

should rely on single phoneme content and change

with time.

As shown in Figure 1.(a), a novel attention mod-

ule has been developed to meet the hypothesis

above. Accordingly, let S2 denote the emotion infor-

mation of target speech and it should depend on the

source content representation C1. First, we normal-

ize the input features and transform them linearly,

giving Query(C1), Key(S2) and V alue(S2) denoted
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by q, K and V respectively. Then we use q and K to

calculate and attention heatmap by aligning differ-

ent phonemic speech content. Subsequently we cal-

culate the corresponding emotion feature Ŝ2 which

depends on C1 by taking the dot product of V and

the attention heatmap. Mathematically, we express

this as follows:

Ŝ2(t) =

∑T ′

t′=1 exp
(
qT (t)K (t′)

)
V (t′)∑T ′

t′=1 exp (q
T (t)K (t′))

·Wo (1)

where q = Wf · IN (C1), K = Wh · IN (S2) and

V = Wg · (S2), and IN indicates a mean–variance

channel-wise normalization to eliminate emotion in-

formation. Here Ẑ2(t) is the tth time step for the

output feature and its length is the same as C1.

If T ′ is the length of S2, then t′ is the index that

enumerates all time steps of the target speech. Fur-

ther, Wf , Wg, Wh and Wo above denote the learned

weight matrices, which are implemented as Conv1d

layer in which both kernel and stride are of unit

length.

Our attention module can appropriately embed

an emotion feature which depends on the content

information for another phoneme. For each time

step of C1, this attention mechanism can automati-

cally align the most similar phonemic pronunciation

of target speech S2 and generate the target style

features which depend on source speech content in

a learnable manner.

2.3 Objective Function

Let X1 and X2 be mel-spectrogram belonging to

source speech and target speech respectively. The

training losses for the proposed method are de-

scribed as follows:

Reconstruction loss: The reconstruction loss is

adopted to generate reasonable speech using disen-

tangled representations.

Lrec = ∥G (X1, X1)−X1∥1 (2)

Adversarial loss: The adversarial loss is used to

render the converted feature indistinguishable from

the real target feature.

Ladv = E[logD (X2) + log (1−D (X1→2))] (3)

Content loss: The content loss is used to preserve

the linguistic content of the input speech.

Lc = (∥Ec (X1→2)− Ec (X1)∥2) (4)

Style loss: The style loss is used for better emotion

state transferring.

Ls = ∥Att (Ec (X1→2) , Es (X1→2))

−Att (Ec (X1) , Es (X2)) ∥2
(5)

The full objective function can be summarized as

follows:

Lfull = Ladv + λcLc + λsLs + λrecLrec (6)

where λc, λs, and λrec are trade-off parameters.

3 Experiments

3.1 Experimental Conditions

We conduct experimental evaluations on the ESD

database [14], which contains 350 parallel utterances

audio data recorded by 10 native English speakers

with five different emotions. The baseline model is

a StarGAN-based EVC model [5]. In this paper,

we only consider four emotional categories of them:

angry, happy, neutral, sad. Input and output data

had the same speaker, but expressing different emo-

tions. We set the three datasets into the following:

neutral to happy voice, neutral to angry voice, and

neutral to sad voice. Training and testing sets are

non-overlapping utterances randomly selected from

the same speaker (300 utterances for training, 50

utterances for testing). We use MelGAN vocoder

to generate audio waveforms from converted mel-

spectrogram. We trained the proposed model by

ADAM optimizer with 0.0001 as learning rate. The

weighting parameters are simply set as λc = 2,

λs = 2 and λrec = 5 in Eq. (6).

3.2 Objective Evaluations

Fig. 2 MCD results for different emotions.

Mel Cepstral Distortion (MCD) was used for the

objective evaluation of spectral conversion, MCD is
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defined below.

MCD = (10/ ln 10)

√√√√2

24∑
i=1

(mcti −mcci )
2 (7)

In Eq. 7, mcti and mcci represent the target and the

converted mel-cepstral, respectively.

To evaluate the F0 conversion, we used the RMSE

RMSE =

√√√√ 1

N

N∑
i=1

((F0ti)− (F0ci ))
2
, (8)

where F0ti and F0ci denote the target and the con-

verted F0 features, respectively. A lower MCD and

F0-RMSE value indicate smaller distortion or pre-

dicting error.

Figure 2 and Figure 3 show the MCD and F0-

RMSE results from the neutral to emotional pairs

respectively. Here, N2A, N2S, N2H represent the

datasets neutral to angry voice, neutral to sad voice

and neutral to happy voice, respectively. We can see

that the proposed method can obtain good results

in spectral and F0 conversion. Through the objec-

tive experiments, we empirically confirm that the

proposed method effectively brings the converted

acoustic feature sequence closer to the target one

than baseline.

Fig. 3 F0-RMSE results for different emotions.

4 Conclusions

In this paper, we propose an emotional voice con-

version framework with a novel attention module for

realistic and natural speech conversion. Our pro-

posed framework is based on GAN which is com-

posed of a generator and a discriminator typically,

and the generator is an encoder-decoder module in

our work. The experimental results show the effec-

tiveness of our proposed method.
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