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Abstract—In this paper, we present an automatic speech
recognition (ASR) system for the speech of a person with a cleft
lip and palate (CLP). The accuracy of speech recognition for a
person with CLP is lower than that of a physically-unimpaired
(PU) person because the CLP speech has characteristics that
differ from those of a PU person; moreover, the amount of
available training data is quite limited. In the field of ASR for
PU people, data augmentation and self-supervised learning have
been studied to tackle this problem of data scarcity. In this paper,
we evaluate the effectiveness of those approaches on CLP speech
recognition, and propose a data augmentation technique based on
frequency warping. The formant of CLP speech tends to fluctuate
compared to that of PU people. In order to compensate for the
large variety of formant components, our data augmentation
method stretches or contracts the spectrogram through the
frequency axis. The experimental results on an ASR task with
two CLP subjects showed that both data augmentation and self-
supervised learning were effective for CLP speech recognition,
and our proposed method further improved the performance
of those two approaches based on conventional SpecAugment
techniques.
Index Terms: speech recognition, data augmentation, self-
supervised learning, cleft lip and palate, dysarthria

I. INTRODUCTION

CLP is a congenital disorder that results in a cleft in the lip
or palate. Because disorders of the oral cavity can adversely
affect speech production, CLP can also cause dysarthria de-
pending on the case. Therefore, the speech of people suffering
from such dysarthria is often unintelligible. Figure 1 shows
the spectrograms of speech uttered by a physically-unimpaired
(PU) person (top) and a person with CLP (bottom). As shown
in this figure, the energy of CLP speech is lower than that of
a PU person in the high-frequency range, which is one of the
factors worsening the intelligibility.

Recently, speech recognition systems have been widely used
in various aspects of daily life, such as cell phones and smart
speakers. However, since most speech recognition systems are
designed for PU people, it is difficult for such existing systems
to recognize CLP speech accurately. Therefore, there is a great
need for an accurate ASR system for CLP speech. Such a
system is expected to be used for various applications, such
as communication support and articulation training.

There has been an attempt to construct an ASR system for

Fig. 1. Example of spectrogram uttered for a Japanese sentence /i q sh u: k
a N b a k a r i ny u: y o: k u o sh u z a i sh i t a/ (“I covered the New
York news for just one week”) of a physically-unimpaired person (top) and
a person with CLP (bottom)．

CLP speech [1]. However, even when the system uses the
CLP speech as training data, the recognition accuracy of CLP
speech is generally lower than that of normal speech. The
main problem that makes it difficult to build an ASR system
for CLP speech is the lack of training data. In order to build
an ASR system that is accurate enough for practical use, it
is essential to prepare a sufficient amount of training data.
There are two ways to collect the training data (speech and
text label); 1) recording speech of speakers who read prepared
scripts; and 2) recording speakers’ spontaneous speech and
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transcribing it later. In the former way, the amount of data
that can be collected is quite limited because reading scripts
is a great burden for CLP people and it has a high cost. On
the other hand, although collecting speech is relatively easy in
the latter way, the transcription of CLP people’s spontaneous
speech is extremely difficult because of their low intelligibility.
Consequently, the former way is employed in many datasets of
speaking disorders [2][3] although the amount of collectable
data is limited. Therefore, it is necessary to construct an ASR
system using a smaller amount of training data than that
collected from PU people.

One of the ways to increase the amount of data is through
“data augmentation”. Data augmentation is a technique that ar-
tificially increases the number of learning patterns by applying
signal processing to existing training data [4][5][6][7][8]. Data
augmentation is expected to contribute to the improvement of
ASR performance, especially when the amount of training data
is small. Another way to increase the amount of available data
is leveraging unlabeled data through “self-supervised learn-
ing”. This approach trains a neural-network model through
a pseudo-task generated without human annotation. In this
way, the model learns the representation of input features, and,
therefore, this pre-trained model can be used as a good initial
model for the target task [9][10][11][12][13].

Figure 2 depicts our proposed strategy for the training model
for a CLP person. In this approach, we use both spontaneous
speech and script-reading speech. The spontaneous speech,
which is easy to be collected but difficult to be annotated,
is used to pre-train the model without labels through self-
supervised learning. Then, a small amount of script-reading
speech, which does not need human annotation but difficult to
be collected, is used to fine-tune the pre-trained model.

Although conventional methods of data augmentation and
self-supervised learning have shown promising results in many
ASR tasks for PU people, it has still been unclear if they
are also effective for dysarthric speech recognition. In this
paper, we evaluate the effectiveness of conventional meth-
ods of data augmentation and self-supervised learning based
on the well-known SpecAugment [14][15] on CLP speech
recognition. In addition, because conventional methods are
proposed for PU speech, they are not necessarily optimal for
CLP speech. Therefore, we propose a new method based on
“frequency warping” that takes the nature of CLP speech into
consideration. We confirm the effectiveness of the conven-
tional data augmentation and self-supervised learning through
experiments carried out on speaker-dependent CLP speech
recognition tasks, and we also demonstrate that the perfor-
mance can be further improved by combining the conventional
method with our proposed method.

II. RELATED WORKS

We discuss in detail the conventional methods that have
been proposed for PU speech recognition tasks and are used
as our baseline. Park et al. [14] proposed SpecAugment, which
performs data augmentation on log-mel spectrograms input
to a neural network. SpecAugment uses three types of data

Fig. 2. Proposed training model strategy for a CLP person.

augmentation: 1) time masking, which masks the spectrogram
through the time axis; 2) frequency masking, which masks the
spectrogram through the frequency axis; and 3) time warping,
which expands and contracts the spectrogram so that the
reference point moves through the time axis. The size of
the mask or time warping are set as parameters according
to the dataset. Each augmentation corresponds to partial loss
of speech segments, partial loss of frequency information, and
deformation in the time direction. Since the generated training
data is partially different from the original data, it is reported
that SpecAugment can train an ASR model robustly against
such information loss and deformation and can improve the
recognition accuracy. In this study, we use SpecAugment as
the baseline method of data augmentation.

Next, we discuss a method of self-supervised learning for
speech recognition, which is used as the baseline method in
this research. Wang et al. [15] proposed a method using data
augmentation similar to SpecAugment. In this method, an
encoder-decoder network is trained before training a speech
recognition system. The encoder extracts hidden features from
the input, and the decoder generates the output, which has
the same size as the input, from the hidden features extracted
by the encoder. During learning, the original input speech is
transformed using the same process as SpecAugment (time
warping, time masking, and frequency masking), after which
the transformed data is input to the encoder. Then, the mean
square error between the output of the decoder and the original
input before performed time/frequency masking is evaluated
as training a loss function. In other words, the encoder-
decoder network is trained such that the network recovers
the original input from the masked one. In order to recover
the original data accurately, the encoder should extract high-
quality representations of speech features from the input.
Therefore, a robust encoder can be obtained without using
human annotation, and it can be used as a good pre-trained
ASR model. It is reported that the performance of speech
recognition systems incorporating the encoder trained by this
method can be improved. In addition, it is also reported that
the performance of speech recognition systems can be further
improved by increasing the amount of training data using
SpecAugment.
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TABLE I
STATISTICS OF F1 FREQUENCY [HZ]．

Statistics [Hz] PU1 PU2 PU3 SPK1 SPK2
Mean 420 417 410 437 450
Max - min 128 140 152 176 185
Standard deviation 31 30 39 44 48

III. METHODS

Since the conventional methods described in section II were
proposed for PU people, they do not necessarily consider
the characteristics of CLP speech. Therefore, it is expected
that if we add a new transformation that reflects the CLP
speech’s characteristic to the conventional methods, the data
augmentation and the self-supervised learning will be further
effective for CLP speech recognition. In [16], it is reported that
the difference between the dysarthric speech and the normal
speech appears in their formant frequencies; that is peaks in
the spectrum, and they proposed a method of assessment for
dysarthric speech based on the formant frequencies.

With this in mind, we analyzed the first formant (F1)
frequencies of the utterances for two subjects with CLP (SPK1
and SPK2) and three PU subjects (PU1, PU2, and PU3) in the
ATR Japanese speech database [17]. (For details, see section
IV.) Table I shows the statistics of the F1 frequency of each
speaker. Comparing the F1 frequency statistics of CLP subjects
and PU subjects, we see that the values of “Max - min” and
the standard deviation of CLP subjects are higher than those
of PU subjects. These results indicate that the CLP speech has
a larger formant frequency variety than PU speech. However,
since the amount of the collectable training data of CLP speech
is limited as described in the Introduction, the amount of
training data is not sufficient to train the variation of the
formant frequency, and we hypothesize that it is a factor in the
decreased accuracy associated with CLP speech recognition.

Therefore, we propose “frequency warping”, which trans-
forms the speech data through the frequency axis. Since fre-
quency warping moves the formant frequency of the original
speech data, it is expected that the data augmentation and self-
supervised learning with frequency warping can help us to
train a model to be robust against the variation of the formant
frequency, which contributes to the improvement of the CLP
speech recognition system.

Figure 3 shows the procedure of our proposed frequency
warping. The procedure is similar to the time warping used in
SpecAugment and performed on the mel-spectrogram. First,
the reference mel-frequency bin and the reference bin shifting
size are selected. Then, the reference frequency bin is shifted
by expanding and contracting the spectrogram through the fre-
quency axis. This process is performed in a randomly selected
time segment in an utterance. The specific implementation is
described as follows.

The input is a log-mel spectrogram with τ frames and ν
frequency bins. First, the reference frequency bin f is selected
randomly from the range of [Wmax, ν], and the size w of
shifting f is also selected randomly from the range of [Wmin,

Fig. 3. Procedure of the frequency warping．

Wmax]. The Wmin and Wmax are set as hyperparameters.
Next, we select the beginning frame t of the segment, in
which the frequency warping is performed, randomly from
the range of [0, τ − Tmax], and we select the length T
of the segment randomly from the range of [Tmin, Tmax].
t + T is the end frame of the segment. Tmin and Tmax

are set as hyperparameters. Then, the selected segment is
divided into the low-frequency region (size of T × f , yellow
window in Figure 3) and the high-frequency region (size of
T×(ν−f), green window in Figure 3). By contracting the low-
frequency region and expanding the high-frequency region, the
sizes of the low- and high-frequency regions are changed into
T × (f − w) and T × (ν − f + w), respectively. In this way,
the reference frequency bin is shifted. The contracting and
expanding processes are carried out using a PyTorch function
“Image.resize”, which handles the spectrogram as image data.

A. Frequency warping in self-supervised learning

In our proposed self-supervised learning, the frequency
warping is added to the conventional feature transformations
described in section II. Figure 4 shows the overview of the
proposed self-supervised learning procedure. At first, time
warping is applied to the original input in order to increase
the training pattern. Next, frequency warping, time masking,
and frequency masking are performed sequentially. Then,
the mean absolute error (MAE) between the output of the
decoder and the input before performing frequency warping
and time/frequency masking is calculated as the loss function
to train the encoder-decoder network. After proceeding with
the self-supervised learning, the trained encoder is used as a
feature extractor for inputting to the speech recognition model.
Since the encoder is trained to reconstruct the original data
from the data that has been subjected to feature transformation,
including frequency warping, it is expected that the trained
encoder can extract features robustly in spite of the variation
in the formant frequencies.
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Fig. 4. Procedure of training an encoder-decoder network using the proposed
self-supervised learning．

Fig. 5. Training and testing procedures of the ASR model．

B. Frequency warping for data augmentation to train the ASR
model

Figure 5 shows the training and test procedures of the
ASR system with the encoder trained using the self-supervised
learning. During the training of the ASR model, frequency
warping is also used with conventional SpecAugment for data
augmentation. Here, frequency warping is expected to increase
the variety of the formant frequency of the training data, which
can train a robust ASR model against the variation of the
formant frequency.

IV. EXPERIMENTS

We evaluated the data augmentation and self-supervised
learning through experiments on a speaker-dependent
phoneme recognition task with two CLP males (SPK1/SPK2)
who uttered 495 and 503 phonemically-balanced sentences
from the ATR Japanese speech database [17], respectively.
In the scenario of the experiments, it is assumed that only a
portion of the training data has human annotation (i.e., a text
label), and the remaining data does not have the label and is
used for the self-supervised learning. For each subject, 200

TABLE II
SETTING OF THE HYPERPARAMETERS．

Parameter Self-supervised learning Training ASR model
Tw 0～200 0～200
Fw 0～20 0～20
Td −150～150 −50～10

Wmin 0 0
Wmax 10 2
Tmin τ 50
Tmax τ 100

sentences having text labels were used for evaluating the ASR
model. Among these sentences, we used 100 sentences as
training data for the ASR model, 50 sentences as development
data, and 50 sentences as test data. The remaining data (295
or 303 sentences) that did not have text labels was used for
self-supervised learning of the encoder.

The sampling frequency was 16 kHz. We used 40-
dimensional log-mel filterbank features extracted with a frame
shift of 10 ms and a window size of 25 ms. The ASR model
consisted of two layers of bidirectional gated recurrent units
[18] trained on the CTC loss function [19]. The output layer
had 40 dimensions, consisting of 38 phonemes, the unknown
symbol, and the blank symbol of CTC. An Adam optimizer
[20] with an initial learning rate of 0.001 was used for
optimization.

For the self-supervised learning, the encoder network con-
sisted of four bidirectional LSTM layers [21], and the decoder
network consisted of two linear layers with ReLU function.
The self-supervised learning was also optimized using the
Adam optimizer with the initial learning rate of 0.001.

Table II shows the settings of the hyperparameters for the
self-supervised learning (described in section III-A) and the
training of the ASR model (described in section III-B). Tw,
Fw, and Td are the hyperparameters of the SpecAugment.
Tw and Fw correspond to the sizes of the time masking and
frequency masking, respectively. Td corresponds to the size of
shifting the reference time for the time warping. The values
of Tw, Fw and Td were randomly selected from the range
shown in the Table II. The values of the hyperparameters were
experimentally confirmed to be the best accuracy.

A. Results without self-supervised learning

Table III shows the phoneme error rates (PERs) without self-
supervised learning. In this experiments, the log-mel filterbank
features were directly input into the ASR model without
passing the encoder network. As a baseline, we show the
results of training without any data augmentation. In the
case using data augmentation, we compared the results when
each augmentation was used alone, when three conventional
methods were combined (Comb. of 3 types, that is equal to
the original SpecAugment), and when the conventional meth-
ods and frequency warping were combined (SpecAugment +
Frequency warping).

When data augmentation was used alone, all of the data
augmentations that included frequency warping showed better
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TABLE III
PERS [%] OF THE SPEAKER-DEPENDENT CLP MODEL WITHOUT

SELF-SUPERVISED LEARNING．

Augmentation SPK1 SPK2
Conventional method
No augmentation 23.72 24.02
Time masking 22.83 23.13
Frequency masking 22.60 22.97
Time warping 20.78 21.85
Comb. of 3 types (SpecAugment) 19.85 19.95
Proposed method
Frequency warping 22.37 22.78
SpecAugment + Frequency warping 19.43 19.60

performance than the conventional method without augmen-
tation. This result indicates that frequency warping is an ef-
fective data augmentation method for CLP speech recognition.
When three or four types of data augmentation were combined,
the performance was further improved. These results indicate
that the original SpecAugment and the proposed frequency
warping are complementary to each other on the CLP speech
recognition. One of the reasons for the high performance of
time warping might be that the speech speed of CLP subjects
fluctuates, along with formant frequency, and therefore, the
time warping could train the ASR model to be robust against
such fluctuations in the speech speed.

B. Results with self-supervised learning

Table IV shows PERs using the encoder network trained
on the self-supervised learning. The self-supervised learning
was performed in two different ways. One was the con-
ventional method described in section II without frequency
warping (Baseline), and the other the proposed method using
frequency warping (Ours). Each method was evaluated on
three different conditions of the ASR model training: using
no data augmentation (None), using SpecAugment, and using
SpecAugment with the frequency warping. The settings of the
hyperparameters for the data augmentations are the same as
in the experiments of Table III.

Comparing Baseline and Ours, Ours showed better perfor-
mance. The difference of PERs between Baseline and Ours
in Table IV is larger than the difference of PERs between
SpecAugment and SpecAugment + Frequency warping in
Table III. This suggests that frequency warping is particularly
effective in self-supervised learning. It was also found that
adding frequency warping to both data augmentation and self-
supervised learning showed the best performance (17.96 for
SPK1 and 17.85 for SPK2). When we use frequency warping
for data augmentation, the proposed method can generate the
data having formants that are not observed in the original
training data. When we use frequency warping for the self-
supervised learning, it can be considered that the proposed
method can train an encoder that extracts hidden features
and is invariant to the fluctuation of the formant frequency.
Since the expected effects of frequency warping on the data
augmentation and on the self-supervised learning are different,

TABLE IV
PER S[%] OF THE SPEAKER-DEPENDENT CLP MODEL WITH

SELF-SUPERVISED LEARNING．

SPK1 SPK2
Augmentation Baseline Ours Baseline Ours
None 23.10 22.41 22.93 21.89
SpecAugment 19.39 18.65 19.71 19.05
SpecAugment + Frequency warping 19.16 17.96 19.44 17.85
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Fig. 6. F1 frequency of each test sample

they might be complementary to each other.
Finally, Figure 6 shows the mean value of F1 frequency

of each test sample of SPK1. The white and black dots show
samples in which PER were improved / not improved by using
the proposed frequency warping, respectively. As shown in
this figure, the proposed method could improve the PER of
samples having very high or low F1 frequency compared to
the mean of the distribution. This indicates that the proposed
method could train an ASR model that is robust against the
variation of the formant frequency.

V. CONCLUSIONS

In this paper, we investigated methods of data augmentation
and self-supervised learning for CLP speech recognition. We
proposed frequency warping as a method that takes into
account the characteristics of CLP speech; namely, speech hav-
ing a large variation of formant frequency. The experimental
results showed that, although the conventional method based
on SpecAugment was effective for CLP speech recognition,
frequency warping further improved the performance. How-
ever, the accuracy of speech recognition in this paper is still
lower than that of PU people; therefore, more improvement
is needed. In the future, we plan to increase the number of
subjects and analyze other characteristics that can be used for
the data augmentation and self-supervised learning.
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