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1 Introduction

Emotional voice conversion (EVC) is a voice con-

version technique for converting prosody in speech,

which can represent different emotions while retain-

ing the linguistic information. Recently, the study

of VC has attracted wide attention in the field of

speech processing. This technology can be applied

in various domains [1] [2]. Therefore, it has contin-

ued to motivate related studies each year.

Normal VC tasks are designed to transform the

speech of the source speaker to that of the target

speaker, making the conversion speech sound like

the voice of the target speaker. Existing VC meth-

ods can be roughly divided into two categories: a)

conventional shallow approaches and b) deep neu-

ral networks models. Specifically, among the shal-

low approaches, a Gaussian Mixture Model (GMM)

has been commonly used and successfully built upon

over many years [3]. Other VC methods, such as

those based on non-negative matrix factorization

(NMF) [4], have also been proposed. However, these

approaches have some limitations, specifically, they

are time-consuming and require a degree of back-

ground knowledge to implement.

In recent years, deep learning has also markedly

improved the performance of VC systems [12]

through learning hierarchies of features optimized

for the task at hand. However, deep learning mod-

els are restricted to problems with moderate dimen-

sions and sufficient available data. Therefore, most

deep learning-based VC networks do not focus on

the emotional VC, which is mainly affected by low-

dimensional fundamental frequency (F0) features.

Thus, conventional VC models usually convert F0

using Logarithm Gaussian (LG) normalized trans-

formation [5].

However, in VC tasks, the spectral and F0 fea-

tures can affect the acoustic and prosodic features,

respectively. Particularly in emotional VC tasks

where the prosody plays an important role in con-
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veying various types of non-linguistic information

that represent the mood of the speaker, such as iden-

tity, intention, and attitude. Previous studies [6]

have shown that prosody conversion is affected by

both short- and long-term dependencies in different

temporal levels such as the phones, syllables, and

words, within an utterance. The LG-based method

is insufficient to convert prosody effectively because

of the constraints of their linear models and low-

dimensional F0 features.

It has been shown that Continuous Wavelet

Transform (CWT) can effectively model F0 in differ-

ent temporal scales and significantly improve speech

synthesis performance [7]. Thus, in this paper, we

also applied the CWT in the F0 features processing.

Our proposed framework is based on GAN which is

composed of a generator and a discriminator typi-

cally, and the generator is an encoder-decoder mod-

ule in our work.

2 Related work

2.1 Continuous Wavelet Transform

The CWT was originally proposed by Goupil-

laud et al. [8], and for a 1-D input signal, the re-

sult is a 2-D description of the signal with respect

to time-scale parameter (s, τ) of the CWT function

CWT {x(t); s, τ} =

∫
x(t)ψ∗

s,τ (t)dt

ψs,τ (t) = s−1/2ψ

(
t− τ

s

) (1)

where ∗ stands for complex conjugate, ψs,τ (t) is

mother wavelet with the scaling factor s and trans-

lating factor τ . Here, scaling factor s controls the

width of the wavelet and translating factor τ de-

cides the location of the wavelet. The scale s is

inversely proportional to the central frequency (ω)

of the rescaled mother wavelet.
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2.2 Generative Adversarial Networks

Moreover, to improve the emotional VC effect

with non-parallel training data, our proposed frame-

work is based on generative adversarial networks

(GANs) [9] which is composed of a generator and

a discriminator typically. The key to the success of

the GANs is learning a generator distribution PG(x)

that matches the true data distribution. It consists

of two networks: a generator, G, which transforms

noise variables z ∼ PNoise(z) to data space x = G(z)

and a discriminator D. This discriminator assigns

probability p = D(x) when x is a sample from the

PData(x) and assigns probability 1 − p when x is

a sample from the PG(x). In a GAN, D and G

play the following two-player minimax game with

the value function V (G,D):

min
G

max
D

V (D,G) =Ex∼pdata
[logD(x)]

+ Ez∼pz(z)[log(1−D(G(z)))]

(2)

This enables the discriminator D, to find the

binary classifier that provides the best possible

discrimination between true and generated data

and simultaneously enables the generator G, to fit

PData(x). Both G and D can be trained using back-

propagation. The effectiveness of GANs is due to

the fact that an adversarial loss forces the generated

data to be indistinguishable from real data.

2.3 Disentangled Representation Learning

Disentangled representation learning aims to en-

code input data into separate independent embed-

ding subspaces, where different subspaces represent

different data attribute [13]. In the context of emo-

tional voice conversion, if we are able to disentangle

emotion from linguistic content and speaker iden-

tity, we can change the emotion independently of

the linguistic content.

3 Proposed method

3.1 Model Architecture

Our proposed model, illustrated in Fig. 1, con-

sists of two major modules: a generator and a dis-

criminator. The generator is an encoder-decoder

module in our work. The generator consists of

three modules, a content encoder Ec, a style en-

coder Es and a decoder De. The generator is made

up entirely of convolution layers in order to oper-

ate in a non-autoregressive generative manner. In

the training stage, the speaker encoder Es accepts

the acoustic features as input, and learns the rea-

sonable representations relating to emotions in the

embedding space. The Es is built with stacks of

convolutional layers followed an average pooling for

downsampling. The content encoder Ec is adopted

to predict reasonable linguistic representation. Ec

is composed of convolution layers. In addition, we

adopt Instance normalization after each convolution

layer of the content encoder to eliminate speaking

style information. Finally, the decoder De takes the

concatenation of linguistic embeddings and emotion

embeddings to synthesizes the converted speech by

only changing the source style to the target one. We

append a PixelShuffle 1d layer for upsampling.

Unlike the generator, the discriminator is con-

structed with 2d convolution layers like [12] to bet-

ter capture the acoustic texture. There are 3 convo-

lution layers to downsample the feature map grad-

ually. Instance normalization and leaky ReLU are

applied after each convolution layer except the final

output layer.

3.2 Objective Function

Let x and y be acoustic feature sequences belong-

ing to source speech S and target speech T, respec-

tively. The training losses for the proposed VC are

described as follows.

Adversarial loss: The adversarial loss is used to

render the converted feature indistinguishable from

the real target feature.

Ladv (GS→T , DT ) = Ey∼PT (y)[logDT (y)]+

Ex∼PS(x) log (1−DT (GS→T (x)))
(3)

Content loss: The content loss is used to preserve

the linguistic content of the input speech.

Lc = (∥Ec (G (x, y))− Ec (x)∥2) (4)

Style loss: The style loss is used to achieve style

transfer.

Ls = ∥ (Ec (G (x, y)) , Es (G (x, y)))

− (Ec (x) , Es (y)) ∥2
(5)

A reconstruction loss is also adopted to gener-

ate reasonable speech using disentangled represen-

tations.

Lrec = ∥G (x, x)− x∥1 (6)
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Fig. 1 Overview of proposed EVC system

The full objective function can be summarized as

follows:

Lfull = Ladv + λcLc + λsLs + λrecLrec (7)

where λc, λs, and λrec are trade-off parameters to

control the weights of the corresponding losses rela-

tive to the adversarial loss.

4 Experiments

4.1 Experimental Conditions

We conduct experimental evaluations on the

IEMOCAP database [10], which contains about 12

hours of audio data recorded by ten actors with nine

different emotions. The baseline model is a simple

linear F0 conversion system with a neural network

model Stargan-EVC [14]. In this paper, we only

consider four emotional categories of them: angry,

happy, neutral, sad. Input and output data had the

same speaker, but expressing different emotions. We

set the three datasets into the following: neutral

to happy voice, neutral to angry voice, and neu-

tral to sad voice. Training and testing sets are non-

overlapping utterances randomly selected from the

same speaker (80% for training, 20% for test). We

use WORLD [25] vocoder to extract fundamental

frequencies, spectral sequences (sps) and aperiod-

icities (aps) from raw audio waveforms sampled at

16KHz. During preprocessing, we normalized the

source and target, MCC and CWT-F0, features to

zero-mean and unit-variance for each dimension us-

ing their respective training sets. We trained the

proposed model by ADAM optimizer with 0.0001 as

learning rate. The weighting parameters are simply

set as λc = 5, λs = 5 and λ3 = 10 in Eq. (7).

4.2 Objective Evaluations

Mel Cepstral Distortion (MCD) was used for the

objective evaluation of spectral conversion, MCD is

defined below.

MCD = (10/ ln 10)

√√√√2

24∑
i=1

(mcti −mcci )
2 (8)

In Eq. 8, mcti and mc
c
i represent the target and the

converted mel-cepstral, respectively.

To evaluate the F0 conversion, we used the RMSE

RMSE =

√√√√ 1

N

N∑
i=1

((F0ti)− (F0ci ))
2
, (9)

where F0ti and F0ci denote the target and the con-

verted F0 features, respectively. A lower MCD and

F0-RMSE value indicate smaller distortion or pre-

dicting error.

Table 1 shows the MCD and F0-RMSE results

from the neutral to emotional pairs. As shown in Ta-

ble 1, the proposed method can also obtain good re-

sults in spectral and F0 conversion. Through the ob-

jective experiments, we empirically confirm that the

proposed method effectively brings the converted

acoustic feature sequence closer to the target one

than baseline.

5 Conclusions

In this paper, we present a non-parallel EVC

method with disentangled linguistic and style rep-

resentations. Our proposed framework is based
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Table 1 MCD and F0-RMSE results for different emotions. N2A, N2S and N2H represent the datasets

neutral to angry voice, neutral to sad voice and neutral to happy voice, respectively.

MCD [dB] F0-RMSE [Hz]

N2A N2S N2H N2A N2S N2H

Source 6.54 5.36 6.84 77.5 74.6 101.7

Stargan-EVC 4.54 4.81 4.57 57.2 60.8 69.5

Proposed method 3.97 4.69 4.23 46.3 49.6 59.4

on GAN which is composed of a generator and

a discriminator typically, and the generator is an

encoder-decoder module in our work. The experi-

mental results show the effectiveness of our proposed

method.
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