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1 Introduction

Voice conversion (VC) aims to convert speaker-

specific information in source speech while keeping

linguistic information unchanged. There are many

approaches for VC. In general, VC techniques are

broadly grouped into parallel and non-parallel meth-

ods. Parallel voice conversion methods can learn the

frame-wise mapping between source and target spec-

tral features. Among these approaches, the Gaus-

sian mixture model (GMM)-based mapping method

[8] is the most widely used.

Non-parallel voice conversion techniques are cer-

tainly more attractive as parallel data is not eas-

ily available in practice. Non-parallel VC methods

based on generative adversarial networks (GANs)

have been studied [3]. The model using auto-

encoder [5] is also attractive in that it can work for

input speech of unknown speakers with disentangled

linguistic and speaker representations.

However, most of the above-mentioned ap-

proaches cannot implement well in a dysarthric

speech conversion task. Because conventional VC

methods usually focus on non-dysarthric speech

(normal speech). As for dysarthric speech, their

phonetic structures are difficult to discriminate.

Dysarthria is a motor speech disorder affecting mul-

tiple aspects of speech production. In this study, we

focus on dysarthria resulting from cerebral palsy or

amyotrophic lateral sclerosis, which are two of the

prevalent causes of speech disability. Most people

with dysarthria cannot communicate by sign lan-

guage or writing, so there is a great need for voice

conversion systems for them.

Inspired by [5, 11], in this paper, we present a non-

parallel VC method for dysarthric speech with dis-

entangled linguistic and speaker representations. In

this method, a speaker encoder is constructed for ex-

tracting speaker information from acoustic features.

An auxiliary reference encoder is adopted to enforce

a phoneme recognition encoder to extract linguis-
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tic information effectively from dysarthric speech.

A decoder is built for reconstruct dysarthric speech

from the combination of linguistic and speaker rep-

resentations.

2 Related work

Speaking assistance is one of the most important

and meaningful tasks of VC. Previously, we have

published several statistical VC approaches to im-

prove the intelligibility of dysarthric speech. In [1],

we proposed NMF-based VC method for articula-

tion disorders. Some pairs of parallel utterances are

needed in order to build parallel dictionaries. In [2],

we proposed a dysarthric speech conversion method

that utilizes phoneme-discriminative feature asso-

ciated with a VC approach based on partial least

square (PLS). The above-mentioned methods were

effective for dysarthric speech conversion. However,

the drawback is that these two methods require suf-

ficient parallel data, which is difficult to collect. Es-

pecially for severe dysarthria, collecting such paral-

lel data could be tedious. Recently, CycleGAN was

shown that it is a promising method to transform

dysarthric speech to normal speech without parallel

data in [10]. Therefore, we compare our proposed

method with the baseline approach based on Cycle-

GAN.

3 Proposed method

In order to achieve dysarthric speaker conversion,

we should be able to improve the intelligibility of

source dysarthric speech and make the speaker iden-

tity conversion effectively. So it is important to esti-

mate linguistic and speaker-related features because

the phonetic structure of dysarthric speech fluctu-

ates.

3.1 Model Architecture

Our proposed model, illustrated in Fig. 1, consists

of four major modules: a reference encoder Er, a
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Fig. 1 Diagram of the proposed dysarthric speech conversion

phoneme recognition encoder Ep, a speaker encoder

Es, and a decoder D.

In the training stage, the speaker encoder Es ac-

cepts the acoustic features as input, and learns the

reasonable representations relating to speaker in the

embedding space. Es consists of two bi-directional

LSTM layers, an average pooling and a fully con-

nected layer. The phoneme recognition encoder Ep

is used to recognize the phoneme sequence from in-

put acoustic features. In order to align the acoustic

and phoneme sequences automatically, Ep is com-

posed of an bi-directional LSTM based encoder and

a LSTM based decoder with an attention mecha-

nism. The reference encoder Er is adopted to en-

force Ep to predict reasonable linguistic representa-

tion. Er is composed of convolution layers, trans-

forms phoneme sequences into linguistic embedding.

Finally, the decoder De takes the concatenation of

linguistic embeddings and speaker embeddings to

predict mel-spectrogram features. De follows the

structures of the Tacotron model [7]. The proposed

model is pretrained on a normal speech dataset and

then fine-tuned on the dysarthric corpus

When all the components are well trained, we

use the system to perform dysarthric speech conver-

sion on dysarthric corpus. In the conversion stage,

the reference encoder Er is not used. The trained

speaker encoder Es accepts the acoustic features of

source dysarthric speech as input and generates the

speaker-related representations. Then we can re-

place the speaker embeddings with target one. The

source dysarthric speech is also fed into the trained

Ep to have linguistic embedding extracted. Finally,

the decoder generates the converted speech based on

the linguistic information in the source dysarthric

speech and the speaker information in the target

speech.

3.2 Objective Function

Let M be the input mel-spectrograms. The train-

ing losses for the proposed VC are described as fol-

lows.

Contrastive loss: During training process, we will

get two linguistic representations, hp and hr, from

encoder Ep and Er. Both hp and hr are extracted

to represent the speaker-independent linguistc infor-

mation. So we expect that hp and hr share the same

linguistic space. In order to enforce Ep to learn a

reasonable linguistic information, we constrain the

linguistic embeddings from mel-spectrograms to be

close to linguistic embeddings from phoneme se-

quence. Inspired by [11], we adopt the contrastive

loss to increase the similarity between hp and hr.

Lcon =

N,N∑
n=1,m=1

(Imndmn+

(1− Imn)max(1− dmn, 0))

(1)

Here, h
(m)
p and h

(m)
p denote mth and nth sequence

of hp and hr.Imn = 0 if m = n, otherwise Imn = 1.

And

dmn =
∥∥∥h(m)

p − h(n)
r

∥∥∥
2

denotes the distance between hp and hr.

A reconstruction loss is also adopted to gener-

ate reasonable speech using disentangled represen-

tations.

Lrec = ∥De (hs, hp)−M∥2 (2)
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The full objective function can be summarized as

follows:

Lfull = Lcon + λrecLrec (3)

where λrec is a trade-off parameter to control the

weights.

4 Experiments

4.1 Experiments Conditions

The VCTK corpus [9] is used for pretraining.

We carried out dysarthric speech conversion on

the TORGO database [6], which contained record-

ings of 8 dysarthric speakers (3 females, 5 males)

and 7 control/non-dysarthric speakers (3 females, 4

males) with 16kHZ sampling rate. The dysarthric

speech resulting from either cerebral palsy or amy-

otrophic lateral sclerosis are provided. The severity

of dysarthria is varied from severe to mild among

different speakers.

The proposed method was evaluated in a

dysarthric speaker conversion task. One male (M05)

and one female (F03) with dysarthric speech were

stored as the source speakers. The target speakers

are chosen from the non-dysarthric speech group (we

adopt MC01 and FC03). Fifty sentences are used for

testing and the other sentences are used for training.

We adopted 80-dimensional mel-spectrograms as

acoustic features and used WaveNet vocoder [4]

to generate waveforms from the converted mel-

spectrograms.

4.2 Objective Evaluations

Mel-cepstral distortion (MelCD) is commonly

used as an objective metric to measure the global

structural differences between converted speech and

target speech. It is calculated as Eq. (4) by con-

verted Mel-cepstral coefficients (MCCs) and target

MCCs.

MelCD = (10/ log 10)

√√√√2

24∑
d

(mcconvd −mctard )
2

(4)

Here, mcconvd and mctard denote the dth dimension

of the converted MCCs and target MCCs, respec-

tively. A smaller value indicates that the target and

converted features are more similar.

Figure 2 shows the average MelCD values. M, F,

MC and FC denote males with dysarthria, females

with dysarthria, male controls without dysarthria,

and female controls without dysarthria, respectively.

M-MC, M-FC, F-MC and F-FC denote male-to-

male conversion, male-to-female conversion, female-

to-male conversion and female-to-female conversion,

respectively. These results show that the proposed

method achieves a better score than CycleGAN.
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Fig. 2 Comparison of MelCD [dB]

4.3 Subjective Evaluations

We note that a lower value indicates better perfor-

mance in objective evaluation. However, the value

of MelCD is not always correlated with human per-

ception. Therefore, the subjective evaluation was

conducted on ”intelligibility” and ”speaker similar-

ity” for the task of dysarthric speech conversion. For

the subjective evaluation, 20 sentences for each con-

version pair were evaluated by 9 listeners.

For the evaluation of speech quality, we performed

a Mean Opinion Score (MOS) test. The opinion

score was set to a 5-point scale (5: excellent, 4:

good, 3: fair, 2: poor, 1: bad). For the similar-

ity evaluation, the XAB test was carried out. For

both tests, a higher value indicates a better result.

The results of MOS are shown in Figure 3. It

shows that the proposed method achieved a better

score than CycleGAN. The MOS indicates that the

proposed method works relatively well in terms of

sound quality for every speaker pair.
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Fig. 3 MOS for intelligibility with 95% confidence

intervals.

Figure 4 shows the results of XAB tests on speaker

similarity. The difference between the two methods
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is significant. These results did not contradict the

results of objective evaluation and show the effec-

tiveness of our proposed method.

5 Conclusions

In this paper, we present a non-parallel VC

method for dysarthric speech with disentangled lin-

guistic and speaker representations. The model key

feature is that we utilize a phoneme-guided refer-

ence encoder to enforce the phoneme recognition en-

coder to learn reasonable linguistic representation of

dysarthric speech. Experimental results show that,

in the task of dysarthric speaker conversion, our pro-

posed method makes it possible to obtain higher in-

telligibility and better similarity compared to base-

line VC. In this study, we mainly consider dysarthric

speech with low intelligibility. So in future experi-

ments, we will increase the number of subjects and

further examine the effectiveness of our method ac-

cording to different severities of dysarthric speech.
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