
Convolutional neural networks Memory
Optimization Inference with Splitting Image

Weihao Zhuang, Tristan Hascoet, Ryoichi Takashima, Tetsuya Takiguchi and Yasuo Ariki
Graduate School of System Informatics

Kobe University
1-1 Rokkodaicho, Nada Ward, Kobe, Japan

Email: zhuangweihao@stu.kobe-u.ac.jp, tristan@people.kobe-u.ac.jp,
rtakashima@port.kobe-u.ac.jp, takigu@kobe-u.ac.jp, ariki@kobe-u.ac.jp

Abstract—In this paper, we propose a method to reduce the
memory requirement of Convolutional Neural Networks (CNN)
in the inference phase. Before feeding an input image into the
CNN model, input image will split evenly to several sub-images
and feed them into models respectively and combine the output
after a certain layer.

Index Terms—Deep learning, Convolutional Neural Networks,
memory optimization

I. INTRODUCTION

Convolutional neural networks have demonstrated excellent
accuracy and performance in various computer vision tasks
due to their powerful feature extraction ability. As various
high accuracy CNN models are designed, more and more
parameters are required in the model, and the amount of
memory occupied by the activation resident on the device
memory is also increasing.

Therefore, the recent research direction of CNN is toward
device-friendly development, which aims to reduce the con-
sumption of computing resources while having acceptable
accuracy. Common methods are lightweight model design and
model compression. Model compression can be divided into
two category: pruning and quantization.

Efficient CNN architecture design has been proposed by a
lot of works that by replacing the traditional vanilla convo-
lution layer. ResNet [4], replace a 3x3 convolution between
two 1x1 convolution layers which is the ‘bottleneck module’,
reducing the number of parameters and FLOPs of the model.
MobileNet [5] adopt depth-wise convolution as alternatives to
normal convolution.

For model compression, pruning is to reduce redundant
weight by cutting the unimportant neural connections. Han
et al. [1] proposed to prune the weight of a pretrained model
which below a certain threshold.Quantization can store the
type of activation and weight into low bit int the device
memory. Courbariaux et al. [2] binarized the weights of model
into –1 and +1. Jacob et al. [3] adopt 8-bit integers for both
activation and weight.

We proposed a method to split the input image into 4
parts before feeding them into a pretrained CNN model for
inference. In this way, the size of each input image is only a
quarter of its original size. In the inference phase, the peak
of memory usage is the addition of model parameters and

Fig. 1. Splitting input to 4 packs as new input.

the input activation and output activation of a certain layer.
After crossing the original peak point, the output activation
from the four inputs is combined. It can reduce the peak of
memory usage in the CNN model.

II. SPLITTING IMAGE INFERENCE

In this section, we explain the proposed method to reduce
memory usage of CNN inference. The method is shown in
figure 1. Input images X ∈ Rc×h×w (c, h, w representing the
channel, height and width) are split into four parts X1, X2, X3

and X4, size of each part is c × h
2 ×

w
2 and feed into CNN

model one by one. After passing through the peak point of
memory usage originally due to the addition of parameters
and input activation and output activation of a certain layer,
combine four outputs activations concatenation and complete
the remaining inference.

This paper uses the ImageNet dataset as the experimental
dataset and Pytorch as the experimental framework. Figure
2 demonstrates the effect of combining outputs after different

(a) ResNet18 architecture

(b) Memory footprint of ImageNet dataset inference

Fig. 2. GPU memory utilization of different stages of a ResNet18 forward
computation

2020 IEEE 9th Global Conference on Consumer Electronics (GCCE)

978-1-7281-9802-6/20/$31.00 ©2020 IEEE678

TABLE I
RELATIONSHIP BETWEEN OUTPUT ACTIVATION COMBINING POSITION, INFERENCE ACCURACY AND MEMORY REDUCTION OF CNN MODELS INFERENCE

IMAGENET DATASET

ResNet18*
combination position bn1 layer[0] layer1 layer2[0] layer2 - - - Resize Image Retrain Model

memory reduction (%) 3.65 5.55 6.47 7.08 7.08 8.53 8.53
accuracy (ours) 67.78 68.63 68.81 68.13 66.95 47.73 60.97

accuracy baseline 69.67

ResNet50*
combination position layer1[0] layer1[1] layer1[2] layer2[0] layer2[1] layer2 [2] - - Resize Image Retrain Model

memory reduction (%) 0.34 0.34 1.82 4.70 4.70 4.70 6.62 6.62
accuracy (ours) 75.33 75.63 75.61 75.67 75.38 74.94 60.10 68.03

accuracy baseline 76.10

MobileNetV2*
combination position features[0] features[1] features[2] features[3] features[4] features[5] features[6] features[7] Resize Image -

memory reduction (%) -0.42 -0.42 12.60 17.59 21.19 21.19 21.19 21.19 29.27
accuracy (ours) 70.27 69.48 71.30 70.43 71.05 69.95 69.43 70.26 51.54

accuracy baseline 71.68

EfficientNet-b0**
combination position blocks[1] blocks[2] blocks[3] blocks[4] blocks[5] blocks[6] blocks[7] blocks[8] Resize Image -

memory reduction (%) 10.70 14.39 17.75 17.75 17.75 17.75 17.75 17.75 23.14
accuracy (ours) 76.09 75.99 75.60 75.43 75.37 75.13 75.02 74.23 54.85

accuracy baseline 76.18

EfficientNet-b3**
combination position blocks[3] blocks[5] blocks[6] blocks[8] blocks[9] blocks[10] blocks[13] blocks[14] Resize Image -

memory reduction (%) 18.27 25.76 25.76 25.76 25.76 25.76 25.76 25.76 25.08
accuracy (ours) 80.48 80.40 80.32 80.28 80.23 80.21 79.74 79.56 71.43

accuracy baseline 80.63

EfficientNet-b7**
combination position blocks[6] blocks[10] blocks[11] blocks[18] blocks[19] blocks[27] blocks[28] blocks[37] Resize Image -

memory reduction (%) 15.25 0.21 26.10 26.28 25.98 25.98 25.98 25.98 26.50
accuracy (ours) 83.86 83.91 83.88 83.89 83.88 83.82 83.73 83.36 81.15

accuracy baseline 83.88

*Pretrained model from https://github.com/pytorch/vision/tree/master/torchvision/models
** Pretrained model from https://github.com/lukemelas/EfficientNet-PyTorch

layers. Figure 2 (a) shows the architecture of ResNet18. Figure
2 (b) shows the amount of GPU memory use (in GB, on the
y axis) at different stages of the ResNet18 computation on
the Imagenet dataset. The x axis represents different layers of
the network in the order of their execution, starting from the
input layer on the left-most part of the plot, until the top layer
of the network displayed on the right-most part of the plot.
The brown curve corresponds to a baseline model, without
applying our method. The peak memory usage appears during
the execution of the first batch normalization layer (bn1) of
the model. The blue curve illustrates the memory usage using
our proposed method to combine the output activation between
bn1 and the following layer. We can see that when combining
outputs between bn1 and layer1, the peak memory usage
was reduced. The orange curve, green curve, red curve, and
purple curve illustrate the memory usage using our method to
combine the output activation after different gradually layers
of the network. It is important to choose a suitable layer to
combine the different activations. The choice of such layer
not only affects the memory usage but also the accuracy of
the model. In the next section, the results of the accuracy will
be shown.

III. EXPERIMENTAL RESULTS

In this section, we perform the experiments to search
the relationship between the position of combining output
activation, memory reduction, and accuracy.

The results of the relationship between combined position,
inference accuracy, and memory reduction are shown in table
I. Due to space limitations, we only compared the effects of
the results of eight different layer selection. And the name of
’combination position’ is determined by the implementation of
the model. We also compared the results of the resized image
to the original half for inference without using our proposed

method. And we retrain ResNet18 and ResNet50 with resized
images to verify the effectiveness of our proposed method.

Comparing our proposed method, resize image method,
and retrain image method, we can conclude that our method
can obtain higher accuracy and the memory reduction is
comparable to the latter two. It is surprising that EfficientNet
[6], a state-of-the-art model, after using our method, the trade-
off between accuracy and memory reduction is better than
other models. Specifically, EfficientNet-b7 reduced memory
usage by 26% without accuracy dropping.

IV. CONCLUSION

In this paper, we have proposed a memory optimization
method of CNN inference by split input image in four parts,
feed them into model respectively, and combine output acti-
vation after a certain layer. Experimental results have verified
the effectiveness of our proposed method.

REFERENCES

[1] Han, S., Mao, H., & Dally, W. J. (2015). Deep compression: Compress-
ing deep neural networks with pruning, trained quantization and huffman
coding. arXiv preprint arXiv:1510.00149.

[2] Courbariaux, M., Hubara, I., Soudry, D., El-Yaniv, R., & Bengio,
Y. (2016). Binarized neural networks: Training deep neural networks
with weights and activations constrained to +1 or –1. arXiv preprint
arXiv:1602.02830.

[3] Benoit Jacob, Skirmantas Kligys, Bo Chen, Menglong Zhu,Matthew
Tang, Andrew G Howard, Hartwig Adam, andDmitry Kalenichenko.
Quantization and Training of Neu-ral Networks for Efficient Integer-
Arithmetic-Only Inference.InCVPR, 2018.

[4] He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for
image recognition. In Proceedings of the IEEE conference on computer
vision and pattern recognition (pp. 770-778).

[5] Howard, A. G., Zhu, M., Chen, B., Kalenichenko, D., Wang, W.,
Weyand, T., ... & Adam, H. (2017). Mobilenets: Efficient convolu-
tional neural networks for mobile vision applications. arXiv preprint
arXiv:1704.04861.

[6] Tan, M., & Le, Q. V. (2019). Efficientnet: Rethinking model scaling for
convolutional neural networks. arXiv preprint arXiv:1905.11946.

2020 IEEE 9th Global Conference on Consumer Electronics (GCCE)

978-1-7281-9802-6/20/$31.00 ©2020 IEEE679

