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Abstract—In this paper, we present an end-to-end automatic
speech recognition (ASR) system for dysarthric speech. Because
the speaking style of a person suffering from an articulation
disorder is quite different from that of a physically unimpaired
person, speech recognition systems for such persons need to
be constructed in such a way that they specialize in meeting
the needs of such dysarthric people. However, the amount of
training data that can be collected from dysarthric people is
limited because of their large burden. Therefore, it is a challenge
to effectively train an ASR model for dysarthric people. In this
paper, we introduce a model adaptation approach to train a more
accurate model with limited training data, which adapts an ASR
model trained by non-dysarthric speech samples for dysarthric
speech recognition. From our experiments on an ASR task with
two dysarthric subjects, the model adaptation approach with
non-dysarthric speech showed better performance than training
from scratch.

Index Terms—Speech recognition, dysarthria, model adapta-
tion

I. INTRODUCTION

Recently, the accuracy of automatic speech recognition
(ASR) systems has been improved with the development of
deep learning technology. ASR systems are expected to be
used for handicapped people because these systems have the
merit of hands-free operation. However, it is difficult to use
ASR systems for the people suffering from speech disorders.
One of the causes of speech disorders is cerebral palsy, which
results from damage to the central nervous system. Athetoid
cerebral palsy, which is the focus of this paper, causes involun-
tary movements of the muscles when the person is in motion.
These involuntary movements influence the movements of the
face and tongue, and for this reason, the utterances of people
with athetoid cerebral palsy are often unclear or unstable.
Because athetoid symptoms also restrict their limb movements,
they are unable to use alternative means of communication,
such as sign language, writing, typing, and so on. Therefore,
there is a great need for a reliable ASR system for those
suffering from dysarthria.

II. MODEL ADAPTATION TO DYSARTHRIC SPEAKERS

In this paper, we attempt to construct an end-to-end ASR
model for a dysarthric person. In the conventional DNN-
HMM hybrid model for a dysarthric speaker, a problem arises
because it is difficult to obtain the alignment information

required to make labels during training because of the unstable
speech associated with athetoid cerebral palsy. Therefore, we
developed an end-to-end speech recognition model that does
not require the alignment information. However, the amount of
speech data obtained from dysarthric people is limited because
their burden is large due to strain on their speech muscles. To
construct the ASR model with a small amount of data, we use
a model adaptation approach, where a source model is adapted
to a target domain. In this work, the source model is pretrained
on a large amount of non-dysarthric speech data in advance,
and then it is fine-tuned on a small amount of dysarthric speech
data. In this way, we can reuse an existing ASR model trained
on a large set of training data of non-dysarthric speakers.

A number of studies of model adaptation for DNN-based
acoustic models has been conducted. A previous work [1]
demonstrated that a model adaptation approach with a DNN-
HMM hybrid ASR model improves the accuracy of dysarthric
speech recognition. In our study, we confirm that the model
adaptation is also effective for training an end-to-end model.

III. EXPERIMENTS

A. Experiment setup

We recorded the speech of two dysarthric subjects (DYS1
and DYS2) having athetoid cerebral palsy. Each dysarthric
subject read 503 sentences included in the ATR Japanese
speech database [2]. For comparison, we also evaluated the
recognition accuracy of a non-dysarthric speaker (MHT)
recorded in the ATR database. We conducted the speech
recognition experiments for each speaker independently. For
each speaker, we divided 503 sentences into 50 utterances
for validation, 50 for evaluation, and the rest for training
a speaker-dependent model. When we applied the model
adaptation, we pretrained the ASR model by using about 240-
hours of non-dysarthric speech recorded in the CSJ dataset [3],
and then, we fine-tuned the model by using the above training
data mentioned above.

For the ASR model, we trained a hybrid CTC/attention
[4] model by using an ESPnet toolkit [5]. The input features
consisted of 80-order mel-filterbank features and 3-order pitch-
based features. The output label was consisted of 39 phonemes
plus the unknown symbol <unk>, the start of sequence
<sos>, and the end of sequence <eos>. The shared encoder
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Fig. 1. Recognition error rates per phoneme

of the hybrid CTC/attention model consisted of four layers
of pyramid bi-directional long short-term memory (pBLSTM)
[6] having 320 cells for each layer. The decoder consisted of
an unidirectional LSTM layer with 300 cells and a softmax
output layer for phoneme entries. The location-aware attention
[7] was used as the attention mechanism. The weight for the
CTC-loss function was set to 0.5 during the multi-task training.
We used the AdaDelta [8] method for optimizing networks.
The weight for the output probability of CTC was also set to
0.5 during the decoding.

B. Results

Table I shows the phoneme error rates (PERs) of a model
trained by CSJ dataset. Comparing the PERs of the dysarthric
speakers (DYS1 and DYS2) and the non-dysarthric speaker
(MHT), the PERs of the dysarthric speakers were significantly
higher than those of the non-dysarthric speaker. These results
indicate that the speaking styles of dysarthric people are quite
different from those of non-dysarthric people.

TABLE I
PERS [%] OF A MODEL TRAINED ON NON-DYSARTHRIC SPEECH DATA

Speaker PER
DYS1 47.6
DYS2 75.2
MHT 3.3

Table II shows the PERs of the model trained from scratch
and that adapted from the non-dysarthria model. As shown in
this table, a model adaptation approach decreased the PERs
by 53.8% (DYS1) and 54.4% (DYS2) relatively. These results
show that, although there is a significant difference between
the speaking styles of dysarthric speakers and those of non-
dysarthric speakers, the knowledge trained from non-dysarthric
speeches is still helpful when training a model using limited
dysarthric speech samples.

Fig. 1 shows the recognition error rates per phoneme that
occurred five or more times in the dataset of DYS2 and MHT.
For the dysarthric speaker, consonants like ‘ky’ and ‘f’ tended
to be miss-recognized. These results indicate that consonants,
which need to be strongly blown, are difficult to recognize. By
analyzing such error tendencies for each dysarthric speaker, it

TABLE II
PERS [%] OF TWO APROACHES TO TRAIN THE SPEAKER-DEPENDENT

DYSARTHRIA MODEL

Speaker Training from Adapted from
scratch non-dysarthria model

DYS1 28.8 13.3
DYS2 29.4 13.4

is expected that the phonemes that are difficult to pronounce
will become apparent.

IV. CONCLUSION

In this paper, we investigated dysarthric speech recognition
using a hybrid CTC/Attention model. The use of this model
adaptation approach, which adapts an ASR model trained by
non-dysarthric speech samples to dysarthric speech, decreased
the error rates. The analysis of PERs also shows it is hard for
dysarthric speakers to pronounce certain consonants. In future
work, we will construct and evaluate a character-level or word-
level end-to-end model, which does not need a pronunciation
dictionary. We will also evaluate its performance with more
dysarthric speakers.
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