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Abstract—The field of connectomics aims to map the intercon-
nections between biological neurons within nervous systems at
the scale of single synapses to gain insights into the structure
and functional organization of biological neural networks. A
critical task for the success of the connectomics enterprise
is the segmentation of neurites from high precision electron
microscopy (EM) images. State-of-the art approaches addressing
this challenging problem typically proceed in three steps: First
cell boundaries are predicted by a Convolutional Neural Network
(CNN) from the raw EM images. Second, boundary maps are
oversegmented into supervoxels. Finally, supervoxels are agglom-
erated to produce the segmentation output. In this work, we focus
on the task of supervoxel agglomeration within such a neurite
segmentation pipeline. Existing greedy agglomeration algorithms
proceed by iteratively merging supervoxel in order of decreasing
probability. In this work, we propose an alternative to such
greedy agglomeration policy by modeling the uncertainty yielded
by merge operations. Instead of greedily merging boundaries with
highest merge probability, we propose to merge boundaries so as
to reduce the entropy of the boundary probability distribution.
We validate our idea on a standard benchmark and show im-
portant boosts in performance compared to the standard greedy
merge policy. Our algorithms comes with negligible additional
computational cost and can be directly integrated within existing
greedy agglomeration frameworks.

Index Terms—Segmentation, supervoxel agglomeration, En-
tropy minimization

I. INTRODUCTION

Precise reconstruction of neural connectivity is of great
importance to understand the functional organization of bi-
ological nervous systems. 3D electron microscopy (EM) can
capture large volume of neuronal tissues within nano-scale
precision, which allows for the identification of even the
smallest neuronal objects like vesicles. With advances in
imaging technologies, EM systems can now produce terabytes
of images within hours. Manually annotating each of the
neurons within such large EM volumes is simply impractical
as it would requires lifetimes of manual labeling from highly
skilled experts to segment. Hence, high-precision segmentation
models are needed to automate the reconstruction of neuronal
circuits.

Current state-of-the art models for 3D neurite segmentation
proceeds in three steps, as illustrated in Figure 1. First, a
CNN is trained to detect boundaries between neurons in
the raw EM images. In a second step, over-segmentation

maps are computed from the boundary map. This is typically
done by non-parametric algorithms like Watershed [9]. These
procedures typically lead to severe over-segmentation. We
refer to these over-segmented regions as supervoxels.

Supervoxels are then merged in the last step of this pipeline,
using either greedy local objectives [3]–[5] or globally optimal
objectives [6]–[8]. While global objectives tend to perform
favorably [8], these solutions are unlikely to scale from
small-scale research benchmarks to the large-scale settings of
practical interest. Hence, we focus our attention on greedy
agglomeration approaches. Greedy agglomeration algorithms
assign an aggregation score to each pair of adjacent supervox-
els, and supervoxel pairs of highest score are greedily merged
at each step of the agglomeration process. Figure 2 illustrates
one step of greedy supervoxel agglomeration. In its most basic
form, the mean boundary probability between two adjacent
supervoxels, as computed by the CNN used in the first step
of the pipeline, is used as aggregation score. Other algorithms
compute aggregation scores from more complex hand-crafted
features [4], [5].

In this work, we propose a simple twist to existing
greedy agglomeration algorithms. The main insight behind our
method is as follows: As a side-effect, merging two supervox-
els impacts the aggregation score of neighboring supervoxel
pairs. Certain merge operations increase the entropy of the
aggregation score distribution, which increases the difficulty
of subsequent merge operations. Other merge operations de-
crease the entropy of the aggregation score distribution, which
eases the decision of subsequent merge operations. Hence,
in addition to the aggregation score between supervoxels, we
also consider the entropy shift of the global aggregation score
distribution induced by the merging operation. We prioritize
merging of supervoxels that reduce uncertainty in the distri-
bution of the aggregation scores, in order to ease subsequent
merging decisions.

In the following section, we relate our work to the existing
literature on neurite segmentation and supervoxel agglomera-
tion. Section 3 briefly defines the mathematical notions and
notations used in the presentation of our proposed algorithm
(in Section 4). Section 5 presents our experiments and results.



Fig. 1. Illustration of the segmentation pipeline. Top: Input EM image and ground-truth segmentation. Bottom: Successive steps of the segmentation pipelines
(from left to right): Boundary map prediction, over-segmentation into supervoxels and supervoxel aggregation. The output of the supervoxel aggregation is
the final output of the segmentation pipeline.

II. RELATED WORK

Oversegmentation into supervoxels followed by agglomer-
ation has been proposed as a strategy for segmenting EM
images in [1], [2], [4], [5]. The vast majority of previous works
have used the Watershed algorithm [9] to over-segment the
boundary maps into supervoxels.

To aggregate super-voxels, the MULTICUT [6], and lifted
MULTICUT algorithms [7], [8] train a classifier to predict the
connectivity of fragments that are then clustered by solving
a computationally expensive combinatorial optimization prob-
lem.

More related to our work, both CELIS [3] and GALA
[4], [5] train a classifier to predict aggregation scores be-
tween adjacent supervoxels. Aggregation scores are used by
a greedy hierarchical agglomeration strategy to produce the
segmentation output. These works have emphasized learning
of the scoring function, often using hand-designed features as
input, which tends to increase the computational complexity
of agglomeration during inference.

Lee et al. [10] have found that scoring pairs of supervoxels
with a single hand-designed feature, the mean boundary prob-
ability of voxels adjacent to supervoxels pairs, often produces
good agglomeration accuracy. They conjecture that the quality
of convolutional network outputs have improved so much in
recent years that the benefits of hand-designed features as used
by the GALA algorithm have drastically decreased.

Our work can be integrated within any existing greedy
agglomeration framework [3], [5], [10]. Following, Lee et al.,
we will use the mean boundary probability as aggregation
score instead of more complex GALA-like features. Instead
of using the aggregation scores of super-voxel pairs to define

merging priority, we propose to use the shift in entropy
resulting from merge operations as a merge priority function.

A. Framework

B. Mathematical Notation

In this section, we introduce the mathematical framework
used to present our proposed method. A supervoxel over-
segmentation map can be represented by an undirected graph
G = {V,E}, called the supervoxel adjacency graph, in
which each node v ∈ V represents a supervoxel and edges
e ∈ E connect adjacent supervoxels (u, v) ∈ V × V .
Greedy agglomeration algorithms iteratively merge pairs of
supervoxels: Each iteration of the algorithm produces a new
graph Gt = {Vt, Et}, in which two nodes of the previous
iteration (ut−1, vt−1) have been merged into one so that |Vt| =
|Vt−1| − 1 Starting from an input graph G0 = {V0, E0}, as
computed by the Watershed algorithm, the algorithm outputs a
graph GT = {VT , ET } after T iterations. The output nodes VT
define the final segmentation output of the agglomeration step.
The goal of greedy agglomeration algorithms is to minimize
a segmentation metric d between VT and a ground-truth
segmentation S. The next section details the choice of metric d
used in our experiments. We denote by S∗(v) the ground-truth
label of a supervoxel v.

The aggregation score f defines the probability of two
adjacent supervoxels sharing the same ground-truth label. In
GALA, f is learned from manually crafted features. Following
[10], we use the average boundary probability of voxels
located on the boundary of adjacent supervoxels.

A merge priority function defines the order in which edges
(i.e.; pairs of supervoxels) should be merged by the algorithm.
Existing greedy agglomeration algorithms use the aggregation



Fig. 2. Illustration of one step of a greedy agglomeration algorithm. On the top, from left to right: one full slice of 3D EM volume, Zoom in on the supervoxel
segmentation at time t and Zoom in on the supervoxel segmentation at time t + 1 after merging two adjacent supervoxels. The red and yellow boundaries
remain unchanged after the merge operations. However, the black and white boundaries have been merged into one same boundary (gray) at time t+ 1. The
blue boundary does not exist anymore after the merge operation. On the bottom, from left to right: Illustration of the supervoxel adjacency graph at time t
and t+ 1

score f as a merge priority function: At each step t, the
algorithm finds the edge e of highest aggregation score and
merges the supervoxels u,v adjacent to e:

e = (u, v) ∈ E (1a)
f : E → [0, 1] (1b)
f(e) = p(S∗(u) = S∗(v)) (1c)
et = argmaxe∈Et

f(e) (1d)

Figure 2 illustrates one step of this greedy agglomeration
process: In this example, the blue edge et = (u, v) has highest
aggregation score f(et) at time t. Hence, supervoxels u and
v (In green and purple) are merged at time t + 1. Algorithm
1 formalizes this greedy agglomeration procedure:

Input:
Supervoxel adjacency graph: G0 = {V0, E0}
Output:
Aggregated adjacency graph: GT = {VT , ET } :
Init:
Initialize t = 0
while P > 0.5 do

e∗ = argmaxe∈E′(f(e))
Gt+1 ←Merge(Gt, e

∗)
t← t+ 1

end
Algorithm 1: DE Policy algorithm.

The idea we present in this paper is to use a merge function
different from the aggregation score f . Instead of merging the

most likely pairs of super-voxels, we propose a merge priority
function that takes into account the uncertainty resulted by
a merge operation in the local neighborhood of the merge
operation.

C. Evaluation

The goal of supervoxel agglomeration algorithm is to
minimize an error function d(VT , S) between a ground-truth
segmentation S of the neurons and the output segmentation
VT of the algorithm. Several methods have been proposed
to evaluate the quality of segmentation in the literature. The
Rand index (RI) [12], which evaluates pairs of points in a
segmentation, has long been the preferred evaluation metrics.

However, Nunez-Iglesias et al. [5] have shown several
disadvantages of the RI metrics, such as being sensitive to
rescaling and having a limited useful range. Instead, they
advocate the use of the variation of information (VI) metric
[11]. The VI metric is defined as a sum of the conditional
entropies between two segmentations:

V I(VT , S) = H(VT |S) +H(S|VT ) (2)

where VT is our candidate segmentation and S is our ground
truth, and H is the conditional entropy. V I can be intuitively
understood as the answer to the question: given the ground
truth (S) label of a random voxel, how much more information
do we need to determine its label in the candidate segmentation
(VT )? Errors in VI scale linearly in the size of the error,
whereas the RI scales quadratically. This makes the V I metric
more suitable to study the accuracy of segmentation models in



large volumetric data. Following, Nunez-Iglesias et al. [5], we
will report our results in terms of V I in the following section.

III. ENTROPY POLICY

Existing greedy agglomeration algorithms use the aggrega-
tion score as merge priority function: they minimize the risk of
merge errors by aggregating the pair of supervoxels that have
the highest probability of sharing the same ground-truth label.
Instead, we propose to use a merge priority function different
from the aggregation score. To motivate our idea, we introduce
the notion of adjacency graph entropy h(G). We define h(G)
as the entropy of the aggregation scores over the edges V of
a supervoxel adjacency graph G:

h(G) = −
∑
e∈E

f(e)× log(f(e)) (3)

The entropy of a graph G measures the uncertainty of
the candidate merge operations in G. A graph G with low
entropy corresponds to a graph with relatively easy to assess
merge decisions, while a graph G with high entropy contains
many uncertain candidate merge operations. Hence, greedily
aggregating supervoxels of a high entropy graph G is likely
to result in many merge errors and poor segmentation results.
Low entropy graph G are likely to yield fewer merge errors,
hence better segmentation results.

One side-effect of a merge operation is to change the
connectivity patterns between supervoxels of the adjacency
graph G. Figure 2 (bottom) illustrates the changes in Gt+1

after merging edge et. As illustrated in this figure, the black
and white edges of Gt are merged into gray edges in graph
Gt+1. Hence merging operations impact the entropy of the
adjacency graph (Equation 3.) as they modify the graph
connectivity E. We write δh(et) the variation of the adjacency
graph entropy resulting by merging the supervoxels adjacent
through et ∈ Et:

δh(et) = h(Gt+1)− h(Gt) (4)

Ideally, we would like merge operations at time t to reduce
the entropy of the adjacency graph at time t+1, i.e., we would
like to merge edges with minimum entropy delta:

et = argmine∈Etδh(e) (5)

However, an edge et may have low entropy delta but
low aggregation score. Although merging such edges would
ease subsequent merging operations by reducing the graph
entropy, it is very likely to produce merge errors. Hence,
a good merge policy should merge edges with both high
aggregation scores and low entropy delta. This implies a
trade-off between entropy delta and aggregation scores in
the aggregation procedure. In the following subsections, we
propose two different implementations of such a trade-off.

A. Lambda-Entropy policy

The lambda-entropy (LE) policy defines a merge priority
function g as follows:

g : E → R (6a)
λ ∈ [0, 1] (6b)
g(e) = (1− λ)× f(e)− λ× δh(e) (6c)
et = argmaxe∈Et

g(e) (6d)

The LE policy trades off entropy delta and aggregation
score by introducing a weighting factor λ, which balances the
importance given to entropy delta relatively to the aggregation
score. The aggregation procedure can be performed following
Algorithm 1, using the merge priority function g instead of f .

B. Delta-Entropy policy

Different from the LE policy, the delta-entropy (DE) policy
directly uses the entropy delta as merge priority function. To
prevent from merging edges of low aggregation score, the DE
policy only merges edges et with aggregation scores above
a given threshold Pt. Starting with a high threshold P0, the
DE policy merges all edges e with aggregation scores higher
than P0. Once all such edges have been merged, a lower
threshold P1 = P0 − ∆ is set to allow additional edges of
lower aggregation score to be merged. The DE policy proceeds
by iteratively decrementing the aggregation threshold until a
stop value. The DE policy is fully parameterized by ∆, and
is formalized in Algorithm 2.

Input:
Supervoxel adjacency graph: G0 = {V0, E0}
Parameter ∆
Output:
Aggregated adjacency graph: GT = {VT , ET } :
Init:
Initialize P0 = 1−∆
Initialize t = 0
while Pt > 0.5 do

E′ = {et|et ∈ Et, f(et) > Pt}
if |E′| > 0 then

e∗ = argmine∈E′(δh(e))
Gt+1 ←Merge(Gt, e

∗)
Pt+1 ← Pt

else
Pt+1 ← Pt −∆

end
t← t+ 1

end
Algorithm 2: DE Policy algorithm.

IV. EXPERIMENT AND RESULTS

We evaluate our proposed method on the SNEMI3D dataset
[13]. The SNEMI3D dataset consists of a 1024× 1024× 100
voxels EM volume, fully annotated with individual neuron
labels. We use a sub-volume of 320 × 320 × 100 voxels as



validation set to evaluate our different agglomeration policy
and the remainder of the dataset as training data. We train
a 3D-Unet as proposed in [10] on the training set to predict
cell boundaries, and use a variant of the Watershed algorithm,
as proposed in [14], to over-segment the boundary map into
supervoxels. As suggested in [10], we use the mean boundary
probability as aggregation score, and evaluate the VI score ob-
tained by greedy agglomeration using different merge priority
functions.

As a baseline, we use the greedy a score policy used by
previous works [4], [5], [10]. This policy iteratively merges
pairs of super-voxel in decreasing order of aggregation scores.
We compare the results obtained by our proposed policies to
this baseline.

Fig. 3. Evolution of VI scores along the aggregation process using different
merge policy (left) throughout the full agglomeration process, and (right)
zoomed in on the last few steps of the agglomeration process.

Figure 3 shows the evolution of the VI score along the
iterative agglomeration process following different policies.
A lower VI score means a more accurate segmentation. The
baseline aggregation policy scores a minimum VI of 0.81. In
comparison, the best VI scores obtained by the DE and LE
policy are respectively 0.73 and 0.79.

Figure 4 illustrates the dynamics of each policy along
each step of the agglomeration process. This figure shows
the evolution of the aggregation score f and the entropy
delta δh at each iteration of the merge process. The baseline
policy iteratively merges supervoxels in order of descending
aggregation scores. Hence, the aggregation score smoothly
decreases with each iteration step. The LE-policy trades off
entropy delta and aggregation score with a λ weighting fac-
tor. Hence the aggregation score continually decreases with
variations due to the different entropy delta δh of supervoxel
pairs. The DE-policy proceeds by first merging all supervoxel
pairs with aggregation score above a threshold P0 = 95% in
increasing order of entropy delta. It then iteratively lower the
threshold Pt as all supervoxel pairs above the current threshold
have been merged. Hence, the aggregation score decreases
sharply between each threshold values, while the entropy delta
smoothly increases at each step.

Finally, Table 1 and 2 show the final VI scores yielded
by the DE-policy and LE-policy, respectively, for different
hyper-parameters. The results presented in Figure 3 and 4 were
computed with the optimal hyper-parameter choice: λ = 0.3
and ∆ = 0.05. The DE policy, with sufficiently low ∆ seems

Fig. 4. Illustration of the different merge policy dynamics along the aggre-
gation process. Top: Evolution of the aggregation score f . Bottom: Evolution
of the entropy delta δh From left to right, the different plots show results for
the baseline aggregation policy, DE-policy and LE-policy.

to perform the best. We recommend using the DE-policy with
small ∆ in the range of 0.05 to 0.1.

TABLE I
VI SCORES OF DE POLICY AGGREGATION FOR DIFFERENT ∆.

∆ VI
10−6 0.81
0.05 0.73

0.075 0.79
0.1 0.76
0.16 0.81
0.25 0.97
0.5 2.51

TABLE II
VI SCORES OF LE POLICY AGGREGATION FOR DIFFERENT λ.

λ VI
0 0.81

0.1 0.81
0.2 0.80
0.3 0.79
0.4 0.81
0.5 0.84
0.6 0.92
0.8 1.16
1 2.51

V. CONCLUSION

Precise neurite segmentation is a major task in connec-
tomics. The ability to quickly and accurately segment indi-
vidual neurons from large-scale EM images is primordial to
shed some light into the mysteries of the brain. A critical step
in state-of-the-art segmentation pipelines is the aggregation of
oversegmented super-pixels. In this paper, we proposed a sim-
ple entropy policy for the greedy agglomeration of supervox-
els. Our policy boosts the accuracy of greedy agglomeration
algorithms, is easy to implement, and comes with negligible



computational cost, so that it can be easily integrated within
any existing greedy agglomeration framework.
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