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Abstract—We propose in this paper a neural network-based
lip-to-speech synthesis approach that converts “unvoiced” lip
movements to “voiced” utterances. In our previous work, a
lip-to-speech conversion method based on exemplar-based non-
negative matrix factorization (NMF) was proposed. However,
this approach has several problems. First, the unnatural pre-
processing of visual features is required to satisfy the non-
negativity constraint of NMF. Next, there is a possibility that
an activity matrix cannot be shared between the visual and
the audio feature in an NMF-based approach. To tackle these
problems, in this paper, we use convolutional neural networks
to convert visual features into audio features. Furthermore, we
integrate an exemplar-based approach into the neural networks
in order to adopt an advantage associated with our previous
work. Experimental results showed that our proposed method
produced more natural speech than conventional methods.

Index Terms—lip reading, speech synthesis, multimodal, assis-
tive technology, neural networks

I. INTRODUCTION

An assistive technology is a system or a product that is used
to improve the functional capabilities of individuals with dis-
abilities. Over the past few decades, some speech processing
techniques have been adopted in assistive technology. As a
result of recent advances in statistical text-to-speech synthe-
sis (TTS), hidden Markov model (HMM)-based TTS is used
for reconstructing the voice of individuals with degenerative
speech disorders [1]. Voice conversion (VC) is also applied to
assistive technology. A Gaussian mixture model (GMM)-based
VC method has been applied to reconstruct a speaker’s indi-
viduality in electrolaryngeal speech [2] and speech recorded
by non-audible murmur (NAM) microphones [3].

In this paper, we propose lip-to-speech synthesis using con-
volutional neural networks (CNN [4]). Lip images without a
voice recording are converted to a voice utterance. We assume
our proposed method will be an assistive technology for those
who have a speech impediment. Moreover, our approach can
be applied to voice reconstruction of videos that lack sound
tracks or communication tools in noisy environments.

Lip reading is a technique of understanding speech by
visually interpreting the movements of the lips, face, and
tongue when the spoken sounds cannot be heard. For ex-
ample, for people with hearing problems, lip reading is one
communication skill that can help them communicate better.
McGurk et al. [5] reported that we human beings perceive a
phoneme not only from the auditory information of the voice
but also from visual information associated with the movement

of the lips and face. Moreover, it is reported that we try to
catch the movement of lips in a noisy environment and we
misunderstand the utterance when the movements of the lips
and the voice are not synchronized. In the field of speech
processing, audio-visual speech recognition (lip reading) has
been researched [6]–[9]. Lip reading has the goal of classifying
words or short phonemes from the lip movements.

Recently, some techniques have been introduced for lip-to-
speech synthesis that generate speech from the lip movements.
Aihara et al. [10] proposed an NMF-based lip-to-speech syn-
thesis approach, using a high-speed camera, where the text was
numbers. A high-speed camera is able to deal with fine-grained
imaging [11], but the effectiveness of the time resolution has
not been verified. In this work, we investigate the relationship
between the performance and the number of input video
frames. Akbari et al. [12] proposed a neural network-based
method using the GRID audio-visual corpus [13]. A deep
autoencoder was used for coding speech, and a deep lip-
reading network extracted the encoded features from the face.

Previously, we adopted an exemplar-based NMF for lip-to-
speech synthesis [10]. NMF [14] is a well-known approach
that utilizes sparse representations that decompose the in-
put into a linear combination of a small number of bases.
An exemplar-based NMF decomposes the input observation
into a parallel exemplars “dictionary” and the weight matrix
“activity”. However, there are several problems with this
approach. First, the unnatural pre-processing of visual features
is required to satisfy the non-negativity constraint of NMF
because the discrete cosine transform (DCT) feature was used
as the visual feature. This approach assumes that an activity is
shared between an audio feature frame and the corresponding
visual feature frame. This assumption is wrong, as shown in
Section II-B. Therefore, in this paper, we investigate a novel
lip-to-speech synthesis method that converts the lip image into
the speech spectrum directly. This neural network-based lip-to-
speech synthesis has been proposed and its effectiveness [12]
has been suggested. Moreover, we integrate an exemplar-based
approach into the neural networks. An exemplar-based NMF
VC approach can convert speech with high naturalness [15].
In our model, the weight of the last layer is assigned to the
audio dictionary and the parameters of the previous layers
only are trained from the training data. In NMF VC, the
speaker identity is controlled by the dictionary. Therefore, it is
considered that our model is able to generate various speakers’
voices by changing the dictionary of the last layer (into a
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Fig. 1. Basic approach of NMF-based lip-to-speech conversion

dictionary for another speaker).

II. PRELIMINARY

A. NMF-based conversion

Fig. 1 shows the basic approach of lip-to-speech synthesis
using an exemplar-based NMF [10], where D, F , T , and
K represent the numbers of visual feature dimensions, au-
dio feature dimensions, frames, and bases, respectively. This
method needs two dictionaries that are phonemically parallel.
Wv represents a visual dictionary, and Wa represents an
audio dictionary. In an exemplar-based approach, these two
dictionaries consist of the same words and are aligned with
dynamic time warping (DTW), just as conventional NMF-
based VC is. In this work, because we use a high-speed
camera, we can obtain lip images and audio features with the
same sampling rate without DTW. These dictionaries have the
same number of bases.

At first, for the source visual features Xv , the visual activity
Hv is estimated using NMF while fixing a visual dictionary
Wv . The cost function of NMF is defined as follows:

dKL(X
v,WvHv) + λ||Hv||1 s.t. Hv ≥ 0 (1)

where the first term is the Kullback-Leibler (KL) divergence
between Xv and WvHv and the second term is the sparsity
constraint with the L1-norm regularization term that causes
the activity matrix to be sparse. λ represents the weight of the
sparsity constraint. This function is minimized by iteratively
updating.

This method assumes that when the source and target
observations (which are the same words, with one being
lip images and the other being speech) are expressed with
sparse representations of the source dictionary and the target
dictionary, respectively, the obtained activity matrices are
approximately equivalent. The estimated visual activity Hv

is multiplied to the audio dictionary Wa, and the target
spectrogram X̂

a
is constructed.

X̂
a
= WaHv (2)

Fig. 2. Activity matrices for lip images (top) and spectrogram (bottom). Red
and blue indicate large and small values of activity, respectively.

B. Problems

This conventional NMF-based lip-to-speech synthesis ap-
proach has several problems. First, in [10], DCT features are
calculated from lip images, and used as the visual feature.
To use DCT features as visual features, the unnatural pre-
processing of visual features is required to satisfy the non-
negativity constraint of NMF. Next, this approach assumes
that activity matrices estimated from the audio feature and the
visual feature are equivalent to each other, and can be shared
for a voice and corresponding lip movements. However, there
is a possibility that this assumption is wrong. Fig. 2 shows
an example of the activity matrices estimated from the word
/nana/ (/seven/ in English). These activity matrices are not
similar to each other at all. For this reason, the distribution of
the visual feature is different from the distribution of the audio
feature. For example, an interval from 210 to 350 frames is a
short pause. In this interval, the spectrograms often have very
small values. For this reason, the estimated activity matrices
have values close to zero for all bases. On the other hand,
DCT features calculated from lip images in a corresponding
period represent some characteristics for the lip shape, so the
estimated activity matrices have some values. Therefore, it
seems that this assumption that activity matrices estimated
from the audio feature and the visual feature are equivalent
to each other is not established.

III. PROPOSED METHOD

A. Flow of the proposed method

Fig. 3 shows the flow of our proposed method. First, we
construct an audio dictionary. We employ WORLD [16] for
feature extraction and speech synthesis, and use the WORLD
spectrum for audio features. The WORLD spectra calculated
from the speech data are merged, and we obtain an audio
dictionary. Next, we calculate a high level representation from
lip images using CNNs. Unlike a previous work [10], we
use the lip image as an input feature directly. Our model has
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Fig. 3. Flow of the proposed method.

been arranged in M successive frames as input. Finally, the
estimated high-level representation is multiplied to the audio
dictionary Wa and the target spectra X̂

a
are constructed. In

our proposed method, because the converted spectra are cal-
culated using an audio dictionary, it seems that the converted
speech has high naturalness.

B. Architecture

Table I shows the architecture of CNNs where conv MT
and lReLU indicate the convolution with multiple towers [8]
and leaky ReLU (lReLU) parameter a = 0.2, respectively. All
convolution layers are pre-activation batch-normalized. For the
first to fourth layers, we set convolution layers with multiple
towers. There is no time-domain connectivity between frames.
Each convolution layer is associated with shared weights
between frames and takes an input frame. In the fifth layer,
there are shared weights within input channels (time-domain),
and the time information is merged. In the last layer, we obtain
K-dimensional representation where K is the number of bases
in an audio dictionary.

C. Training

Given the input feature xv
t =

{xv
t−M/2, · · · , x

v
t , · · · , xv

t+M/2} where xv
t is an input

image at frame t, the output yt ∈ RK at frame t is defined
as follows:

yt = f(xv
t ; θ), (3)

where f(·; θ) indicates CNNs that have parameters θ. We
calculate outputs along time from the input image sequence,
and then the converted spectrogram is written as follows:

X̂
a
= WaY, (4)

where Y = {y1, · · · ,yt, · · · ,yT }. The objective function
used to train CNNs is as follows:

min
θ

L(Xa, X̂
a
) + λ||Y||1, (5)

where L(X,Y) indicates the mean square error between X
and Y. Xa is training speech data that corresponds to input lip

TABLE I
NETWORK ARCHITECTURE.

Layer index Operation
0 30 × 45 × M Image
1 3×3 conv MT, 64, lReLU
2 3×3 conv MT, 64, lReLU,

2×2 max-pool
3 3×3 conv MT, 128, lReLU
4 3×3 conv MT, 128, lReLU

2×2 max-pool
5 3×3 conv w/ shared weights, 256, lReLU
6 3×3 conv, 256, lReLU
7 K dense, ReLU

images. The training speech Xa and the dictionary speech Wa

are not duplicated. The second term in Eq. (5) is the sparse
constraint with an L1-norm regularization term that causes Y
to be sparse.

IV. EXPERIMENTS

A. Conditions

We recorded 158 utterances of clean continuous speech con-
sisting of Japanese numbers and ◯ (/maru/) of one Japanese
male by using a high-speed camera. A high-speed camera is
MEMRECAM GX-1. We used 10 utterances as test data. To
construct an audio dictionary, we used ten isolated numbers
and◯. To train CNNs, we used the remaining utterances. The
number of frames in the audio dictionary was 2,469. Audio
and visual data were recorded at the same time in a quiet
room.

The frame rate of the visual data was 500 fps and the
image size was 640×480, which was converted to grayscale,
and the 30×45 mouth area was extracted. Fig. 4 shows
examples of lip images. Sampling frequency of speech was
12kHz. The audio spectrum was extracted by WORLD from
the speech data with a 2ms frame shift. The number of
dimensions of the audio spectrum was 257. In this work, we
focus on spectrum conversion, so the other information, such
as aperiodic components, is synthesized using that of target
speech.

The proposed method was evaluated by comparing it with a
conventional NMF-based method [10] (“Conv”) and a CNN-
based method without using an audio dictionary (“CNN”).
For the conventional system, we used 200-dimensional DCT
coefficients of lip motion images of the source speaker ’s
utterances as input features. We introduced the segment fea-
tures for the DCT coefficient, which consist of its consecutive
frames (the 2 frames coming before and the 2 frames coming
after). Therefore, the total dimension of visual feature is 1,000.
For the CNN-based system, we estimated the spectrum without
using an audio dictionary. In the last layer (layer index 7 in
Table I), we set a dense layer of 257 units. The batch size was
set to 128, and we used SGD with a learning rate of 1.0×10−5,
a momentum of 0.9, and a weight decay of 2.0 × 10−4 to
optimize the CNNs with 30 epochs. A sparse coefficient was
set to 5.0× 10−3. We set the length of input frames M to 5.
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Fig. 4. Sample of successive frames (an interval of 22 ms). The mouth motion is shown left to right.

In order to evaluate our proposed method, we con-
ducted an objective evaluation. We used mel-cepstrum dis-
tortion (MCD) [dB] as a measure of the objective evaluations,
defined as follows:

MCD = (10/ ln 10)

√√√√2

24∑
d=1

(mcconvd −mctard )2 (6)

where mcconvd and mctard denote the d-th dimension of the
converted and target mel-cepstral coefficients, respectively.

B. Results and discussion

Table II shows the average MCD values for each method
with 95% confidence intervals where “eCNN” and “eCNN w/
sparse” indicate our proposed exemplar-based CNN with or
without the sparse constraint. Here, a lower value indicates
a better result. Neural network-based methods outperformed
the conventional NMF-based method using DCT features as
input features. Moreover, we also confirmed that our proposed
exemplar-based approach has comparable performance to the
method that does not use a dictionary.

TABLE II
AVERAGE MCD OF EACH METHOD.

Method Conv CNN eCNN eCNN w/ sparse
MCD [dB] 8.79±2.22 8.17±0.90 8.27±0.50 8.14±0.45

Fig. 5 shows examples of target spectrograms and converted
spectrograms. As shown in the middle panel, the spectrogram
converted using the conventional method was blurring in the
low-frequency portion. For this reason, it seems that the
activity cannot be shared between the audio and the visual
features. Our proposed method generated the proper spectrum
in the low-frequency portion. The high-frequency portion in
the spectrum was not generated sufficiently, and this is one of
our next challenges.

We evaluated the performance of our proposed method
using different numbers of input frames. The results are shown
in Fig. 6. We changed the number of input frames as 5, 9, 13,
and 17. As shown in this figure, the best performance was
achieved with 5 frames (an interval of 5ms). Therefore, there
are significant movements contained in the interval of 5ms that
cannot be captured by normal cameras.

V. CONCLUSION

In this paper, we proposed a lip-to-speech synthesis method
that uses exemplar-based neural networks. In past works,
exemplar-based NMF-VC has shown that converted speech

Fig. 5. Example of spectrograms for /nana hachi/ (/seven eight/ in English)
uttered by an evaluation speaker (top), converted using “Conv” (middle), and
converted using “eCNN w/ sparse” (bottom). The red and the blue indicate
the high and the low amplitude, respectively.

has high-naturalness. Our previous work utilized this ad-
vantage in lip-to-speech synthesis; however, there are sev-
eral problems with this approach. First, visual features are
processed using unnatural pre-processing to satisfy the non-
negativity constraint of NMF. Next, there is a possibility that
activity matrices cannot be shared between the visual and
the audio domains in an NMF-based approach. To tackle
these problems, we introduced an exemplar-based approach
into neural networks that converts the lip images into a
spectrum while fixing weights in the last layer as exemplars.
During training, the model learns the relationship between
lip movements and sounds. In our experiments, we confirmed
that our proposed method outperforms the conventional NMF-
based method. Moreover, our proposed method achieved a
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Fig. 6. MCD of our proposed method with sparse constraint with varying
the number of input frames.

performance that is comparable to the CNN-based method that
does not use a dictionary. Although the method without using
the dictionary generates only the training speaker’s voice, the
proposed method is able to generate the various voices of the
speaker by changing the dictionary. In future experiments, we
will evaluate the proposed method on a speaker conversion
task. By using a high-speed camera, we found that important
information is included in a very short time interval to generate
a voice that cannot be captured by ordinary video cameras.
For our future work, we will investigate some constraints to
generating more natural voices.
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