
Layer-Wise Invertibility for Extreme Memory Cost Reduction of CNN Training

Tristan Hascoet ∗

Kobe University

tristan@people.kobe-u.ac.jp

Quentin Febvre ∗

Sicara

quentin.febvre@gmail.com

Weihao Zhuang

Kobe University

Yasuo Ariki

Kobe University

Tetusya Takiguchi

Kobe University

Abstract

Convolutional Neural Networks (CNN) have demon-

strated state-of-the-art results on various computer vision

problems. However, training CNNs require specialized

GPU with large memory. GPU memory has been a ma-

jor bottleneck of the CNN training procedure, limiting the

size of both inputs and model architectures. Given the ubiq-

uity of CNN in computer vision, optimizing the memory con-

sumption of CNN training would have wide spread practi-

cal benefits. Recently, reversible neural networks have been

proposed to alleviate this memory bottleneck by recomput-

ing hidden activations through inverse operations during

the backward pass of the backpropagation algorithm. In

this paper, we push this idea to extreme and design a re-

versible neural network with minimal training memory con-

sumption. The result demonstrated that we can train CI-

FAR10 dataset on Nvidia GTX750 GPU only with 1GB

memory and achieve 93% accuracy within 67 minutes.

1. Introduction

CNN have been successfully applied to many different

computer vision applications. However, training state-of-

the-art CNN requires special hardware with large mem-

ory capacity, as typical desktop GPU memory is too small

for backpropagation training. Therefore, training deep net-

works comes with the barrier entry cost of either purchas-

ing specialized hardware or renting real-time instances from

cloud service providers. Reducing the memory consump-

tion would allow to train neural networks efficiently in ei-

ther on standard descktop GPUs or embedded devices. On-

device training would also allow fine-tuning neural network

models on local data without sending sensitive data over

the network. Furthermore, a number of recent works have

demonstrated the benefits of large batch training [1]. For

example, linear speed-ups have been observed in training in

∗Equal contribution

Imagenet with batch sizes up to tens of thousands of sam-

ples. Hence optimizing the memory usage of CNN training

would enable both research on optimization and training on

low-end GPU devices.

There is an inherent trade-off between memory con-

sumption and computation time: gradient checkpointing

methods [2] only store a fraction of the hidden activations

and reconstructing the missing activations from the stored

ones during the backward pass.

Reversible Network (RevNet) [3] constrain the architec-

ture of Residual Networks to invertible transformations so

that each layers input activations are reconstructed from

their output during the backward pass. However, two fac-

tors create memory bottlenecks in training RevNet, the

gradient of activations have to wait for the full reversible

block recomputation that is local bottleneck. RevNet fea-

tures non-volume preserving max-pooling layers, for which

the inverse cannot be computed, their input must stored in

memory that we call global bottleneck.

The iRevNet [4] model builds on the RevNet architec-

ture: they replace the irreversible max-pooling with an in-

vertible operation. One downside of their method is that the

proposed invertible pooling scheme drastically increases the

number of channels in upper layers. As the size of the con-

volution kernel weights grows quadratically, the memory

cost associated with storing the model weights becomes a

new memory bottleneck.

In this paper, we use a ResNet-18 as a starting point to

analyse the training memory requirement of different invert-

ible designs. We then introduce a layer-wise invertible ar-

chitecture and characterize the accumulation of numerical

errors across layers, which leads to numerical instabilities

impacting model accuracy. We propose a hybrid architec-

ture consist of layer-wise and residual-block-wise invertible

operations that allow us to efficiently train CNN model by

circumvent those bottleneck. The result show that train-

ing our hybrid model could achieve 93.3% accuracy on CI-

FAR10 dataset in 67 minutes on low-end Nvidia GTX750

GPU only with 1GB memory.

2. Memory footprint

We denote the memory footprint of training a neural net-

work as a value M in bytes. The memory footprint rep-

resents the peak memory consumption during an iteration

of training forward and backward pass. The total memory

footprint M = Mθ + Mz + Mδ consist of the sum of

model weights, hidden activations and gradients.

The vanilla ResNet-18 do not use reversible computa-

tions so that the input activations need to be accumulated in

memory during the forward pass for the computation of the

weight gradients during in backward pass. Hence the peak

memory footprint of training a vanilla ResNet happens at

the beginning of the backward pass. Training this model on

a batch of 32 RGB image of 240×240 requires 12.5 MB to

store the model weights, and 3.8 GB of hidden layers acti-

vation and gradient, for a total of M = 3.81 GB. The mem-

ory cost of the hidden activations is thus the main memory

bottleneck of CNN training.

Reversible blocks have analytical inverses that allow re-

computation of both their input and hidden activations. The

peak memory consumption of a RevNet, happens in the

backward pass through the first reversible block. Follow-

ing our previous example, a RevNet closely mimicking the

ResNet-18 requires M = 1.19 GB and 12.7 MB weights.

The iRevNet is fully invertible as it replaces max-pooling

layers with invertible pooling layers. But, it requires 171
MB tostore its wights and M = 1.35 GB.

3. Methods

The memory bottleneck of RevNet and i-RevNet comes

from the accumulation of hidden activations within a re-

versible block, upon their inverse computation during the

backward pass before their gradient computation. In order

to circumvent this local memory bottleneck, we aim to min-

imize the size of revertible blocks. In the extreme case, each

revertible block consists of a unique layer: these are layer-

wise invertible operations. As we shall shortly dscuss, these

invertible operations introduce numerical error. Hence, we

propose a hybrid model combining layer-wise and block-

wise reversible operation to resolve the local memory bot-

tleneck at the cost of a small additional computation cost.

The following section describes such invertible layers, and,

in Section 3.2, we introduce the hybrid architecture.

3.1. Layer-wise invertibility

Invertible batch normalization As batch normalization

is not a bijective operation, it does not admit an analytical

inverse. However, the input can be recomputed from the

output at the minimal memory cost of saving the channel-

wise mean and standard derivation statistics of the input

batch.

We characterize the factor α of reduction of signal to

noise ratio (SNR) through the inverse reconstruction. Let

us consider a toy layer with only two channels and param-

eters β = [0, 0] and γ = [1, ρ] of first and second order

moment parameters β and γ. For simplicity, let us consider

an input signal x independently and identically distributed

across both channels with zero mean and standard deviation

1 so that, in the forward pass, we have:

α =
snr(x)

snr(y)
(1a)

α =
||x||2

||ǫx||2
||ǫy||

2

||y||2
(1b)

α =
4

(1 + 1

ρ2)× (1 + ρ2)
(1c)

Figure 1. Illustration of the numerical errors arising from batch

normalization layers.

Figure 1 shows the expected evolution of α through our

toy layer for different values of the factor ρ. To validate

our formula, we empirically evaluate α for normal Gaussian

inputs x and output noise ǫy and find it to closely match the

theoretical results given by equation 1.

Invertible activation function A good invertible activa-

tion function must be bijective (to guarantee the existence of

an inverse function), and non-saturating (to prevent numer-

ical errors). For these properties, we focus our attention on

Leaky ReLUs. The analysis of the numerical errors yielded

by the invertible Leaky ReLU follows a similar reasoning

as the toy batch normalization example. We can think of

the leaky ReLU as artificially splitting the input x across

two different channels, one channel leaving the output un-

changed and one channel that divides the input by a factor

n during the forward pass and multiplies its output by a fac-

tor n during the backward pass. The signal to noise ration

reduction factor α can be expressed as:

α =
4

(1 + 1

n2)× (1 + n2)
(2)

Hence numerical errors can be controlled by setting the

value of the negative slope n, similarly to the parameter ρ

in the toy batch normalization example.

Pooling In iRevNet, the authors propose an invertible

pooling operation that operates by stacking the neighboring

elements of the pooling regions along the channel dimen-

sion. We propose a new pooling layer that stacks the ele-

ments of neighboring pooling regions along the batch size

instead of the channel size to circumvent quadratic increase

in weight memory. We refer to both kind of pooling as chan-

nel pooling Pc and batch pooling Pb respectively. The re-

shaping operation performed by both pooling layers can be

formalized as follows:

Pc :R
bs×c×h×w → R

bs×4c×h

2
×

w

2 (3a)

Pb :R
bs×c×h×w → R

4bs×c×h

2
×

w

2 (3b)

The bs refers to the batch size, c to the number of chan-

nels and h× w to the resolution.

Invertible convolutions The inverse of a convolution

is called deconvolution. However, deconvolution is com-

putationally expensive and prone to numerical errors. We

choose to implement invertible convolutions using the chan-

nel partitioning scheme as the reversible block design.

Hence, in our architecture, invertible convolutions, can be

seen as minimal reversible blocks in which both modules

consist of a single convolution. Gomez et al. [3] found the

numerical errors introduced by reversible blocks to have no

impact on the model accuracy.

Full architecture Putting together the above building

blocks. The peak memory usage for training iteration of

this architecture requires M = 590 MB including 29.6 MB

gradients. Similar to RevNet, the recomputation of activa-

tions during the backward pass comes with an additional

computational cost similar to a forward pass.

In Figure 3, we compare the evolution of the accuracy

in both settings for different depth and negative slopes. For

small depths (or high negative slopes), in which the numeri-

cal errors are minimum, both models yield similar accuracy.

Figure 2. Impact of the numerical errors on the accuracy of layer-

wise invertible models.

As the number of layer N increases (resp. the negative

slope n decreases), the numerical errors increase, until they

reach a threshold above which training diverges.

3.2. Hybrid architecture

Figure 3. Illustration of a hybrid architecture and its peak memory

consumption.

Through long chains of layer-wise invertible operations

will accumulate numerical errors and show that numerical

errors negatively impact model accuracy. To prevent these

numerical instabilities, we introduce a hybrid architecture.

Figure 3 illustrate our hybrid architecture, combining re-

versible residual blocks with layer-wise invertible function.

Conceptually, the role of the layer-wise invertible layers is

to efficiently recompute the hidden activations within the

reversible residual blocks at the same time as the gradient

propagates to circumvent the local memory bottleneck of

the reversible module.

Figure 4 illustrate the backward pass though the hybrid

reversible block. The backward pass is made of two phases:

First the input activations are recomputed from the output

using the Reversible block analytical inverse (middle). Dur-

ing this step, hidden activations are not kept in live memory

so as to avoid the local memory bottleneck of the reversible

block. Once the input activation recomputed, the gradients

are propagated backward through both modules of the re-

versible blocks (right). During this second phase, hidden

activations are recomputed backward through each module

using the layer-wise inverse operations, yielding minimal

memory footprint.

Figure 4. Illustration of the backpropagation process through a re-

versible block of our proposed hybrid architecture.

As each layer within these modules is invertible, the hid-

den activations are computed using the layer-wise inverse

along the gradient. The layer-wise inversion allows us to al-

Table 1. Summary of architectures with different levels of reversibility

Model Accuracy #Params Channels Pooling M
Resnet 94.7% 3.1M 32− 64− 128− 256 Max Pooling 1.01G
RevNet 94.5% 3.1M 40− 80− 256− 320 Max Pooling 348M

i-RevNet 93.8% 42.8M 32− 128− 512− 2048 Pc − Pc − Pc 500M
Ours 93.3% 3.7M 32− 128− 512− 512 [Pc,Pc,Pb] 200M

leviate the local bottleneck of the reversible block by com-

puting the hidden activation values together with the back-

ward flow of the gradients. The peak memory consumption

of our proposed architecture, training an iteration over batch

of 32 images of resolution 240×240 would require M =

648MB including 14.8 MB weights.

It should be noted, instead of one additional forward

pass, as in the RevNet and layer-wise architectures, our hy-

brid architecture comes with a computational cost equiva-

lent to performing two additional forward passes during the

backward pass.

4. Results

We use the CIFAR10 dataset as a benchmark for our

experiments. The CIFAR10 dataset is complex enough to

require efficient architectures to reach high accuracy, yet

small enough to enable us to rapidly iterate over different

architectural designs.

We summarize the benefits and drawbacks of our pro-

posed architecture in comparison to different baseline ar-

chitectures. Table 1 summarizes our main results. In this ta-

ble, we compare architectures with different patterns of re-

versibility. To allow for a fair comparison, we have tweaked

each architecture to keep the number of parameters as close

as possible.

All models were trained for 50 epochs of stochastic gra-

dient descent with cyclical learning rate and momentum

with minimal image augmentation.

Compared to the original ResNet architecture, our model

drastically cuts the memory cost of training. These drastic

memory cuts come at the cost of a small degradation in ac-

curacy.

Furthermore, our hybrid architecture requires two equiv-

alent additional forward computation within each backward

pass. In Table 2, we compare the time of training our hy-

brid architecture to 93.3% accuracy on Nvidia GTX1080Ti

and low-end Nvidia GTX750 GPU which only has 1 GB

memory and roughly 400 MB of available memory after the

initialization of various frameworks. It is impractical train a

vanilla ResNet with large batch size, while our architecture

allows for efficient training.

Table 2. Training statistics on different hardware

GPU Accuracy Time

GTX750 93.3% 67min

GTX 1080Ti 93.3% 37min

5. Conclusion

Convolutional Neural Networks have become the back-

bone of computer vision systems. Despite their great suc-

cess, one major drawback of these models is their intense

resource consumption: Training CNNs needs highly opti-

mized implementations leveraging all possible hardware re-

sources. In this paper, we have presented an architecture

able to yield high accuracy classifications within very tight

memory constraints and train a hybrid CNN model to 93.3%

accuracy on a low-end GPU only 1 GB memory.

References

[1] S. McCandlish, J. Kaplan, D. Amodei, and O. Dota Team,

“An empirical model of large-batch training,” arXiv preprint

arXiv:1812.06162, 2018. 1

[2] T. Chen, B. Xu, C. Zhang, and C. Guestrin, “Train-

ing deep nets with sublinear memory cost,” arXiv preprint

arXiv:1604.06174, 2016. 1

[3] A. N. Gomez, M. Ren, R. Urtasun, and R. B. Grosse, “The

reversible residual network: Backpropagation without storing

activations,” in Advances in Neural Information Processing

Systems, pp. 2214–2224, 2017. 1, 3

[4] J.-H. Jacobsen, A. Smeulders, and E. Oyallon, “i-revnet: Deep

invertible networks,” arXiv preprint arXiv:1802.07088, 2018.

1

