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Abstract— To extract an effective feature in prediction of sub-
jective impressions from single-trial neurophysiological record-
ings, the spatial filter that extracts brain activities related to
impressions were constructed using the common spatial pattern
(CSP). We focus on subjective preference induced by chords
composed of 3 notes with different frequency ratio. Magnetic
cortical activities while hearing chords and comparative judg-
ment on pair of them were measured. The predictive model
that predicts the scale value of preference was trained using
the CSP-based feature for each participant. The result of
the evaluation experiment shows that the CSP-based feature
improved the mean prediction accuracy in all participants,
compared with the other features without spatially filtering.
Furthermore, the capability of construction of a spatial filter
that extracts cortical activities varying with degree of preference
using the comparative judgments was indicated.

I. INTRODUCTION

Sensory assessment of sound is essential to improve the
comfortableness of sound environment and the quality of the
product. While the psychological methods were convention-
ally used for assessment of sound, the neurophysiological
methods are promising because they are potentially less
influenced by the cognitive bias, and they can assess even the
subconscious impressions. To create a practical neurophysio-
logical index, the relations between sensory scales indicating
subjective impressions and brain cortical activities have been
investigated in the past [1], [2], [3]. Although these studies
indicated the possibility of assessment of auditory impres-
sions, the neurophysiological indices were not sufficiently
robust for practical use: the found correlations were small,
the found relations were complex, or they were not consistent
in any kinds of sounds. Most of the relations between brain
activities and subjective impressions are still unclear.

On the other hand, creating a neurophysiological index for
assessment of impressions is regarded as finding a mapping
from the space of brain activities to sensory scales. Using
the machine learning techniques, complex relations between
brain activities and subjective impressions can be learned.
Additionally, the prediction of the scale value from a single-
trial recording is desirable for a practical index.
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The common spatial pattern (CSP) is well-known as a
successful method to extract neural activities related to the
motor imagery from the single-trial electroencephalography
(EEG) in application of brain-computer interface [4]. The
spatial filter obtained by the CSP can enhance/attenuate the
activities under a condition while attenuating/enhancing the
activities under the other condition. The signal-to-noise ratio
of the single-trial recordings under assessment of subjective
impressions can be improved using the CSP.

In this paper, we focus on subjective preference induced
by chords composed of 3 notes with different frequency
ratio. It is considered that consonance and dissonance of
the chords affect subjective preference of them. First, mag-
netoencephalography (MEG) while hearing chords and the
comparative judgments on pair of them were measured.
Owing to MEG that has high accuracy of source localization,
accurate spatial patterns can be estimated. Paired-comparison
enables a participant to judge the preference relation of
stimuli more easily and accurately. Second, the CSP-based
spatial filter that extracts brain activities varying with degree
of subjective preference was constructed using the preference
relation of stimuli. Third, the model that predicts the scale
value of preference from brain activities was trained for each
participant and its performance was evaluated.

II. MEG RECORDINGS

A. Stimuli

Seven kinds of chords composed of 3 notes, i.e. triad, were
generated as stimuli, using the methods in previous studies on
interaction between degree of consonance and brain activities
[5], [6]. These chords had different frequency ratios: 2:3:4,
4:5:6, 6:7:8, 8:9:10, 10:11:12, 12:13:14, and 14:15:16. Each
note consists of 6 harmonics with equal amplitude. The
lowest frequency of each chord was fixed at 220 Hz. The
duration of stimuli was 200 ms including 20 ms rise and fall
time. The sound pressure level of the stimuli was 73.0± 0.5
dB SPL.

B. MEG Measurements

Five males (mean age ±SD: 30.5±9.05) participated in the
MEG measurements. They had normal hearing and no history
of neurological diseases. Informed consent was obtained
from each participant after explanation of the experiment.
The experiment was approved by the Institutional Review
Board on Ergonomic Research of AIST.

The measurements were performed in a magnetically
shielded room using a 122-channel whole-head neuromag-
netometer (Neuromag-122TMNeuromag Ltd.). In each trial,
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paired different stimuli were presented to participant’s both
ears sequentially with the inter-stimulus interval of 1000 ms,
using an insertion-type earphone. After presentation of the
latter stimulus, a participant judged which of stimuli he/she
felt preferred using two buttons corresponding to judgment.
All permutations of 2 different stimuli were presented ran-
domly and repetitively until each stimulus was presented
at least 100 times. Magnetic signals were passed through
the analog filter with a passband from 0.03 to 100 Hz and
sampled at 400 Hz.

III. FEATURE EXTRACTION

A. Data Preprocessing

Artifacts and unnecessary components were removed from
measured raw data. Measured signals on some bad channels
of the magnetometer were ignored in subsequent analyses.
Low frequency components less than 2 Hz, and power line
noise of 60 Hz and its harmonic of 120 Hz were cut off using
the 4th-order and 2nd-order zero-phase Butterworth filters.
Subsequently, trials including large absolute amplitudes more
than 1000 fT/cm were removed as artifact. The independent
component analysis (ICA) was applied to large-artifact-free
trials to remove remaining artifacts and magnetic response
of cardiac activities and eye movements. ICA algorithm used
in this phase was FastICA [7].

Seven kinds of oscillatory activities: theta (4–8 Hz), alpha
(8–13 Hz), low-beta (13–20 Hz), high-beta (20–30 Hz), low-
gamma (30–50 Hz), mid-gamma (50–70 Hz), and high-
gamma (70–100 Hz), were obtained from denoised trials
using the 8th-order zero-phase Butterworth filter.

B. Common Spatial Pattern

The CSP is a successfully used technique to design
optimal filter for discrimination between EEG signals in
two conditions [4], [8]. A band-passed multichannel signal
of a single trial is denoted as E ∈ RN×T , where N is
the number of channels and T is the number of temporal
samples. The estimate of the covariance matrix under the
condition c ∈ {1, 2} is denoted by Cc ∈ RN×N , and it was
computed by following equation:

Cc =
1

|Ic|
∑
i∈Ic

EiE
T
i

tr(EiE
T
i )

(1)

where Ic is the set of indices labeled as the condition c, T

is the transpose operator, and tr(·) is sum of the diagonal
elements in a square matrix. The spatial filter of the CSP
is obtained by solving the following generalized eigenvalue
problem [4]:

C1w = λ(C1 +C2)w. (2)

The generalized eigenvector corresponding to the largest
generalized eigenvalue maximizes the variance under the
condition 1 and minimizes the variance under the condition
2, and vice versa.

In this study, since independent components corresponding
to noise were removed, the total covariance matrix, Ctotal =
C1+C2, was rank deficient. Thus, dimensionality of signal

(the number of channels) was reduced using the eigenvalue
decomposition, Ctotal = UDUT, then we obtained spatial
filter of CSP using the whitening and simultaneous diagonal-
ization [8]. Let D̃ ∈ RR×R be the diagonal matrix whose
diagonal elements have R (< N ) nonzero eigenvalues of
Ctotal, and let Ũ ∈ RN×R be the basis matrix composed of
eigenvectors corresponding to nonzero eigenvalues arranged
in D̃. The transformation for dimensionally reduction and
whitening is given by P = ŨD̃

−1/2
where D̃

−1/2
is

the diagonal matrix such that D̃
−1

= D̃
−1/2

D̃
−1/2

. The
matrix P transforms C1 and C2 into S1 = P TC1P and
S2 = P TC2P , respectively. S1 and S2 are simultaneously
diagonalized by the orthonormal matrix V ∈ RR×R:

V TS1V = Λ1, V TS2V = Λ2, (3)

where Λ1 and Λ2 are diagonal matrices whose diagonal
elements are eigenvalues of S1 and S2, respectively. The
sum of the corresponding eigenvalues of S1 and S2 is always
equal to 1, i.e. Λ1 + Λ2 = I . Eventually, filtered signal
ECSP ∈ RR×T is given by

ECSP = V TP TE = W TE (4)

where W = PV . Each column vector of W and corre-
sponding eigenvalue of S1 are solution of (2).

We constructed a spatial filter that discriminates between
activities just after hearing more preferred stimulus (con-
dition 1) and activities just after hearing less preferred
stimulus (condition 2) using the CSP. This filter is expected
to extract cortical activities increasing/decreasing with degree
of subjective preference. The bandpass-filtered MEG during
200–1000 ms after stimulus onset was used as E. Two
generalized eigenvectors corresponding to the largest and
the smallest generalized eigenvalues were chosen for spatial
filtering. The square root of variance of spatially filtered
signal was computed for each frequency band. The number
of dimensions of the feature vector of the CSP became 14
in total.

IV. IMPRESSION PREDICTION

A. Predictive Model

Let f be the mapping from the feature space of brain
activities into the scale of subjective preference. We call
f the predictive model in this paper. The predictive model
f was trained from pairs of features extracted from brain
activities just after hearing pairs of stimuli and comparative
judgment. We assume that a comparative judgment y ∈
{−1, 1} between sequentially presented stimuli A and B
is determined by a magnitude relation between f(xA) and
f(xB), where xA and xB is feature vectors when A and B
are presented, and that the mapping f is linear: f(x) = aTx
where a denotes the linear weight. The binary variable
y takes 1 if stimulus A is preferred to stimulus B, and
vice versa. The predicted comparative judgment is calculated
from the sign of difference between the predicted scale values
as follows:

ŷ = sgn(aT(xA − xB)) (5)

5169



where sgn(·) is the signum function. If a predicted judg-
ment is consistent with a measured judgment, the following
inequality is satisfied:

yaT(xA − xB) ≥ 1. (6)

Training of the predictive model under inequality constraint
(6) through all trials was achieved by the support vector
machine (SVM)-like framework in [9]. The trained model
became the maximum margin classifier that classifies the
difference between paired feature vectors into two classes
corresponding to comparative judgment.

B. Experiment

To verify the effectivity of the CSP-based fea-
ture, the event-related desynchronization/synchronization
(ERD/ERS)-based feature and the linear discriminant analy-
sis (LDA) feature without the spatial filtering were computed.
The ERD/ERS was computed as the relative change of the
mean power of the bandpass signal during 200–1000 ms after
stimulus onset (denoted by Pa), from the mean power in
reference interval of 500 ms before stimulus onset (denoted
by Pr) [10], i.e. ER = (Pa−Pr)/Pr. The ERD/ERS feature
was obtained for each frequency band and channel. To fit its
dimensionality to the CSP feature, the principal component
analysis (PCA) was applied to the ERD/ERS feature for each
band, and the number of dimensions reduced to 14. The
LDA-based feature was extracted by the LDA instead of the
PCA in extraction of the ERD/ERS-based feature. Since a
pair of features was labeled by a comparative judgment, the
LDA was applied to difference between paired ERD/ERS
feature vectors. The dimensionality of the LDA-based feature
was 7 because the number of the meaningful basis of the
LDA is limited to less than the number of classes.

The predictive models were trained using these features
for each participant, and their performances were evaluated
with the prediction accuracy of comparative judgment. The
number of paired data after artifact rejection was different for
each participant, and was in the range of 312–374. All paired
data were divided into the training set and the evaluation set
by the procedure of the 10-fold cross-validation. The training
set was divided again into the 2 sets for training of a model
and tuning of the hyperparameters by the procedure of the
10-fold cross-validation.

C. Results and Discussion

Mean prediction accuracies for each feature and partici-
pant are shown in Fig. 1. Mean prediction accuracy with the
CSP-feature was the highest of all features in all participants.
However, there is no significant difference of the mean
accuracy between the methods of feature extraction.

An example of two magnetic spatial patterns of the spa-
tially filtered alpha activities corresponding to the largest
and smallest eigenvalues are shown in Fig. 2. They were
computed from the corresponding column vectors of the
pseudo-inverse of the matrix W T in (4). Fig. 2 (a) indicates
that the alpha activity in the left temporal can be related to
cognitive processing on subjective preference. A distinctive
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Fig. 1. Mean prediction accuracies for each feature and participant. Error
bars indicate the standard deviation.

pattern in the parietal region is also shown in the in Fig.
2 (b). This region covers the motor cortex. The pattern in
Fig. 2 (b) presumably did not reflect the activity related to
subjective preference, but the activity in the motor cortex
related to finger movement at comparative judgment which
occurred in the interval of 200–1000 ms after onset of the
latter stimulus.

To visualize distribution of feature vectors for each stimu-
lus, the CSP-based features and the LDA-based features were
projected onto the 2-dimensional space spanned by 2 bases
corresponding to the first and second principal components
of a dataset for model training. Examples of these projected
features are shown in Fig. 3. The projected CSP-based
features for training tended to form 2 separate clusters
corresponding to relative preference of paired stimuli unlike
the LDA-based feature. The CSP-based features for tuning
of the hyperparameters that were not used for construction
of the spatial filter tended to be projected between 2 clusters.
In Fig. 3 (a), most of the CSP-based feature corresponding
to the stimulus 1, which was the most preferred stimulus,
belong to the left cluster.

These results indicate that the spatial filter using the CSP
can extract brain activities varying with degree of subjective
preference nevertheless the only binary comparative judg-
ments were used as information on subjective preference.
In light of higher mean accuracy and separability, the CSP-
based feature is possibly more discriminative and robust
feature for prediction of subjective preference than the LDA-
based one. On the other hand, the mean accuracies were close
to 50%. Such low performance was probably due to over-
fitting. Decrease/increase of the power of signal in either
condition can be emphasized even if extracted activities are
irrelevant to subjective preference.

V. CONCLUSION

We constructed the spatial filter using the CSP to extract
brain magnetic activities varying with degree of subjective
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Fig. 2. An example of magnetic spatial patterns of the spatially filtered
alpha activities corresponding to the largest (a) and smallest (b) eigenvalues.

preference induced by chord. In training of the filter, the
only paired-comparative judgments between paired chords
were used as information on subjective preference. The CSP-
based feature slightly improved performance of the predictive
model compared with the other features without spatial
filtering.

For practical assessment of impressions using neurophysi-
ological index, utilization of EEG and additional improve-
ment of feature extraction are essential. Our method is
applicable to EEG data recorded by same the experimen-
tal paradigm. Optimal selection of the frequency band is
expected to be effective because the dominant frequency
band of cortical activities related to subjective preference
can be different for each subject. Regularization of the CSP
is also effective to prevent the spatial filter from over-fitting
[11]. The regularization that equalizes the variance of filtered
activities induced by the same stimuli is considered to be
suitable.
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