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Abstract When a sound hits an object, it causes the surface of the object to vibrate. Some research has been
carried out on the recovering of sounds by extracting the vibrations seen on video images. This research is expected
to be applied in the field of surveillance and security because sounds can be recorded from relatively far away.
The vibration of objects due to sound is so fast and minute that it is invisible. However, it is possible to observe
such changes in objects by using the high-speed video as the movement of each pixel by using a complex steerable
pyramid. In the conventional method, the movements of all pixels are added together to recover the sound. So it
is possible that some noise source vibrations are mixed because there are some pixels that move independently of
the sound source being focused upon. In this paper, we propose a sound recovery method focusing on the vibration
modes of the object associated with the frequency. The vibrating parts of objects are different depending on the
material, shape and frequency. The vibration is composed of some normal vibrations, and each has different loops
and nodes. We confirm which part of the object is vibrating for each frequency of the sound, and recover the sound
using a filter based on the response of the object. Which part is vibrating is confirmed from the amplitude response
of each pixel when the signal of that frequency is the largest. This response and the reliability of the signal of each
pixel are multiplied to each pixel as a filter. We recovered sounds from several objects in videos and ascertained the
effectiveness of the method.
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Fig. 2 Example of image decomposition
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Fig. 3 Procedure of extraction of phase difference
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Fig. 5 Procedure for obtaining the vibration modes
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Fig. 6 Sample frames of videos
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7
Fig. 7 Spectrogram of input signal (chirp)

8 /o m o sh i r o i/
Fig. 8 Spectrogram of the utterance of /o m o sh i r o i/

1 SSNR
Table 1 SSNR of recoverd sound for the chirp signal

SSNR [dB] Object 1 Object 2 Object 3
Conventional method 0.6114 1.0259 0.8882

Proposed method 2.3520 2.1770 1.2008
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SSNR short-time objective intelligibil-
ity (STOI) [15] Table 2

SSNR

9
Fig. 9 Spectrogram of sound recovered from object 1

10
Fig. 10 Spectrogram of sound recovered from object 2

2 /o m o sh i r o i/
Table 2 Evaluation of recoverd sound for the utterance of /o m

o sh i r o i/

SSNR [dB] STOI
Conventional method -0.5806 0.5989

Proposed method -0.4093 0.6227
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Fig. 11 Spectrogram of sound recovered from object 3

12 /o m o sh i r o i/
Fig. 12 Spectrogram of recovered utterance of /o m o sh i r o i/
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