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Zero-shot learning (ZSL) models use semantic representations
of visual classes to transfer the visual knowledge learned from a set
of source classes to a disjoint set of target classes. In this paper, we
propose to learn these representations from dictionary definitions
using  an  LSTM  model.  We  explore  several  variants  over  our
baseline,  including the  addition  of  an  attention mechanism and
pretraining on various tasks. We found that neither the attention
mechanism nor pretraining of the LSTM model on pure NLP tasks
had any effects on the model’s accuracy. However, pretraining the
model  on  the  more  related  task  of  image retrieval  yielded  large
gains  in  accuracy,  suggesting  a  promising  direction  for  future
research. 
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I.  INTRODUCTION 

Zero-shot learning models can be seen as the combination of
three different modules as illustrated in  Figure 1: The visual
module extracts visual features from raw images; in this work,
we  use  a  Resnet-50  convolutional  neural  network  [1].  The
semantic  module  extracts  class-wise  semantic  features  from
raw descriptions of the visual classes. In this work, we propose
to use an LSTM to process the dictionary definitions of the
visual classes. The core ZSL module assigns a similarity score
between the visual and semantic features respectively extracted
by the two lower modules. In this paper,  we used a bilinear
model. Together, the full model takes as input a pair  (x,y) of
raw image  x  and class  definition y  and outputs  a  similarity
score between both inputs. 

Training is performed by optimizing a contrastive loss function
with  stochastic  gradient  descent  so  as  to  maximizes  the
similarity  score of  matching  inputs  pairs  (x,y),  i.e.,  for
dictionary definition y matching the object being represented in
input image x, while minimizing it for non-matching pairs. 

Zero-shot learning models are classifiers able to generalize to
classes unknown at training time. To assess the ability of our
model to generalize to unseen classes, we train our model on a
fixed  set  of  training  classes  C test and,  at  test  time,  we
evaluate the generalization ability of our model on a disjoint set
of test classes C test so that C test∩C train=∅

We  used  images  from  the  Imagenet  dataset  and  dictionary
definitions from Wordnet. In total, our dataset consists of more
than 14 million images across 20,000 classes. One definition is
given per class and each definition is made of between 5 and
50 words, with an average of 15 words per definition which is
relatively little data with regard to learning in the LSTM. Our
initial  intuition  was  that  by  pretraining  the  LSTM on  NLP
tasks, it would learn some structure from sentences that would
yield better representations of the visual class definitions after
fine-tuning on our task at hand. Hence we first experimented
on  pretraining  the  LSTM  module  on  the  tasks  of  Neural
Language Modeling and Document Classification.

In a second attempt, we tried pretraining our LSTM on the task
of  image  retrieval.  To  do  so,  we  used  a  popular  image
captioning dataset and casted the problem of image retrieval as
an  image  classification  task  in  which  each  pair  of
(image,caption) represents a class of its own.

Lastly, we experimented with adding an attention mechanism
on top of the LSTM model. The intuition behind this addition
was that, as illustrated by words marked in bold in Figure 1,
some  words  of  the  definition  contain  more  visually
discriminative information than others.

Figure 1: Illustration of our model architecture  
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The rest of this article is organized as follows. In section II., we
present existing works related to ours. Section III. describes in
more details our model, our optimization procedure as well as
each  of  the  improvements  described  above.  Section  IV.
presents our results and we conclude in Section V.

II. RELATED WORK

Early work on ZSL focused on well established benchmarks of
domain-specific  image datasets such as animals [2] or birds
[3]. This line of work uses handcrafted binary visual attributes
as  semantic  features  to  represent  the  visual  classes,  thus
bypassing the need of the semantic module in the architecture
of  Figure  1.  More  recently  [4]  proposed  the  use  of  word
embeddings as semantic representation of visual classes. This
is  attractive  as  word  embeddings  can  be  computed  in  an
unsupervised manner on large text corpora so that there is no
need  for  expert  annotations  of  visual  attributes  for  visual
classes.  Using  word  embeddings  as  visual  class  semantic
features  has  allowed  to  generalize  the  zero-shot  learning
setting  from  domain  specific  classification  tasks  to  generic
object recognition settings.
In [5], the authors train an LSTM on  Wikipedia descriptions.
They  combine  learning  of  the  LSTM  model  with  other
semantic representations in an end-to-end differentiable deep
architecture. In our work, we only use Wordnet definitions as
textual descriptions and focus on enhancing the performance
of the LSTM module by means of pretraining on various tasks.

III. PROPOSED METHOD

A. Baseline model

Our model is illustrated in  Figure 1. We initialized the visual
module  with  a  Resnet-50  pretrained  on  the  ILSVRC2012
image classification dataset.  We used pretrained GloVe word
embeddings  to  encode  the  inputs  of  the  semantic  module.
Encoded definitions y fed as input to the LSTM model, and we
denote by L( y) the final output of the LSTM model. Given
an input image x, we denote by C(x)  the activation value
of the top hidden layer of the visual module.

We train our model to minimize the following loss function:

 L=∑i=1

i=N
(cos(C(xi ), L( yi ))−∑k=1, j≠i

k=n
cos(C (x j) , L( y j )))             (1)

where N denotes the number of sample in the training set, cos
denotes the cosine distance and k is a negative sampling factor
parameterizing our model.

B. Optimization

In its largest version, our dataset consists of over 20,000 visual
classes  that  amounts  to  more  than  14  million  images.
Randomly accessing such large data from a regular hard drive
creates an important bottleneck in our computation pipeline so
that optimizing a full epoch over the dataset takes more than a
day,  despite  parallelizing  disk  accesses  and  running  the

computations on GPU. To speed up the learning and improve
the stability of learning in the LSTM module, we decompose
the training procedure as follow: 
After  pretraining  the  CNN,  we  cache  in  memory,  for  each
class, the mean activation values of the CNN’s top layer over
their  training  sample:  given  a  visual  class c with N c

samples {x c, i }i∈N c
,we compute:

xc=1 /N c×∑i∈N c

xc , i                                                    (2)

We then pretrain the LSTM module on the class-wise mean
activation  values  xc following  equation  (1).  This  way
training of the LSTM module can be performed in-memory
which considerably speeds up the learning.
Finally, the model can be fine-tuned sample-wise over the full
dataset. During this phase, the error can be back-propagated
through  both  modules  in  an  end-to-end  learning.  In  our
experiments  we  explored  various  parameterization  of  our
model,  so that, for time constraints, the results presented in
section IV. were computed without sample-wise fine-tuning.
We  minimize  equation  (1)  by  stochastic  gradient  descent,
randomly sampling mini-batches of 20 samples from the full
training  set.  For  each  correct  pair  sample (xi , y i) ,  we
randomly sample  k=19  erroneous pairs  (xi , y j) .  We

gradually  decay  the  learning  rate  from  10−2 to  10−4

along training. 

C. Improvements

1) Attention Mechanism
As illustrated by the words marked in bold characters in Figure
1., some words of the dictionary definitions are clearly more
visually discriminative than others. To encode this prior in our
model,  we added  a  soft  attention  mechanism on top  of  the
LSTM output.  However, as presented in section IV. (AT), this
addition yielded little to no improvement.

2) LSTM Pretraining
The LSTM module is trained with 20,000 Wordnet definitions
made of 5 to 50 words. The size of this dataset arguably does
not allow for much learning in the LSTM model. Hence, we
explored  pretraining the  LSTM module on several  different
tasks.

-  Pretraining  as  language  modeling:  Given  the  relatively
small  size  of  our  training  text  corpora,  we  question  if  our
model could benefit from large unsupervised pretraining. In a
first experiment, we pretrained the LSTM model as a Neural
Language  Model  (NLM)  on  the  English  Wikipedia  corpus.
NLM are trained in an unsupervised manner so they can be
trained  on  very  large  text  corpora  without  requiring  any
labeling. 

-  Pretraining  as  document  classification:  In  a  second
experiment,  we pretrained the LSTM model on a Document
Classification (DC) task. Imagenet classes represent a subset of
20,000 out of the full 117,000 concepts defined in Wordnet. In



this experiment, we pretrain the LSTM model on the task of
classifying  each  input  definition  into  its  associated  Wordnet
concept. This contrasts to the NLM pretraining setting in which
the LSTM model was trained for a predictive task on data from
a different domain (the Wikipedia corpus). In this experiment,
we pretrain the LSTM in a discriminative setting on similar
domain data (the Wordnet definition). This corpus, however, is
much smaller than that of the unsupervised NLM setting.

- Pretraining as image retrieval:

Lastly, we pretrain our model on an image retrieval  task using
the COCO captioning dataset (IC). 

Figure 2: Examples of (image, caption) pairs from the COCO
captioning dataset on the top two rows and (image,definition)

pairs from the Imagenet/Wordnet dataset on the lower row
In this setting, we treat each (image,caption) pair of the dataset
as a class of its own. Similar to ZSL training, we extract visual
feature representations from COCO images as the CNN’s top
layer activation values and update the LSTM weights so as to
minimize equation (1) by stochastic gradient descent. 

Figure 2 gives some examples of image/caption pairs used for
image  retrieval  pretraining  and  illustrates  their  difference  to
image/definition  pairs  of  the  target  ZSL  task.  We  found
interesting differences among captions. Samples in the top row
are illustrative of more  narrative captions. In these examples,
the caption mentions several different objects scattered through
the image in a coherent narrative. In contrast, samples of the
second row are illustrative of more descriptive captions. Those
captions  mainly  focus  on  a  single  object  of  the  image,
describing it in a manner reminiscent to dictionary definitions
(illustrated  in  the  last  row).  Every  caption  can  not  be

categorized as fully descriptive or narrative as most captions lie
somewhere in the middle of these two categories. This figure
illustrates  the  gap  between  caption  domain  and  definition
domain. This gap seems to be wider for some captions that tend
to  be  more  narrative  and  narrower  for  more  other,  more
descriptive captions.

In this experiment, we first pretrain our LSTM model on the
COCO captioning  dataset  and  then  fine  tune  it  on Wordnet
definitions.  We show that,  fine-tuning the model  on a large
enough number of training classes improves the accuracy over
the pretrained image-retrieval model, suggesting that the gap
between caption and definition domain is an import factor.

IV. EXPERIMENTS AND RESULTS

A. Experiments

In a first experiment, we used a fixed test set of 200 classes as
was proposed in [4] and train our model with a training set of
increasing number of classes. Training classes were randomly
sampled from the whole Imagenet dataset. Results presented
in the following figures were averaged over 5 runs of different
training  classes  to  reduce  the  noise  due  to  the  random
selection  of the training classes.
In a second experiment, we used a fixed training set of 5,000
classes and randomly sampled classes for test sets of different
sizes. We average our results over 5 runs of different randomly
drawn test classes. In both experiments, we report our results
in  terms  of  top-k  accuracy  as  traditionally  reported  in
Imagenet challenges.

B. Results

Figure 3. shows the top-k classification scores obtained by the
different variations of our model for different k and different
sizes of training set.

Figure 3: Top-k classification accuracy for different number
of training classes on a 200 test-split. The x-axis shows the

number of classes in logarithmic scale

This is a nice breakfast 
of eggs, a mini muffin, 
coffee, and orange juice

Cars try to maneuver into 
parking spaces along a 
densely packed city street

Her meal was sitting 
on the dining table 
across from her

A long empty, minimal 
modern skylit home 
kitchen.

A large passenger airplane 
flying through the air.Half of a white cake 

with coconuts on top.

large Arctic and 
subarctic grouse with 
feathered feet and 
usually white winter 
plumage

large dangerous warm 
-water shark with 
striped or spotted 
body

Any of various seeds 
or fruits that are 
beans or resemble 
beans



Both the attention mechanism (ATT) and the NLP pretraining
(NLM  and  DC)  did  not  significantly  affect  the  model
accuracy. In contrast, pretraining on the image retrieval  task
(IC)  yielded  very  positive  results.  We  observed  that  fine-
tuning the image retrieval model on small (200-1000 classes)
training sets degraded the accuracy as the model overfits to the
small set of training classes.  However,  for larger  number of
classes, fine-tuning did improve on the accuracy of the image-
retrieval  model.  An  interesting  result  is  that  the  gain  in
accuracy  from  image-caption  pretraining  persisted,  albeit
diminished, even for large number of training classes. In this
case, and contrarily to the other two pretraining methods we
experimented  with,  this  confirmed  our  hypothesis  that  the
LSTM  model  would  benefit  from  pretraining  on  different
domain data and fine-tuning on similar domain data.

Figure 4: Top-k classification results for different number of
training classes on a 5000 train-split. The x-axis shows the

number of classes in logarithmic scale

Figure 4.  shows the  result  of  our second experiments.  This
experiment  highlighted  similar  trends:  Pretraining  on  the
image  retrieval  task  did  improve  on  the  model’s  accuracy
while NLP pretraining (DC) did not  significantly affect  the
model’s accuracy.

C. Future work

As dictionary definitions are not specifically  designed to be
visually  discriminative,  they  contain  a  lot  of  noisy
information,  seemingly  useless  for  visual  recognition  tasks,

which led us  to  believe  that  we could gain in  accuracy  by
adding an attention mechanism on top of the LSTM to filter
out non visually discriminative words. Although the attention
mechanism proposed in our model did not  yield significant
improvement,  we will keep exploring this direction in future
work.  One  possible  direction  would  be  to  implement  a  co-
attention  mechanism that  simultaneously  attends  image and
text contents.

IV CONCLUSION

In this paper, we proposed to use an LSTM model to extract
visual class representations from dictionary definition. We were
hoping that using sophisticated text processing models such as
an LSTM either pretrained as a Neural Language Model on a
very large text corpus or as a document classifier on a smaller
corpus of similar domain would increase the accuracy of our
ZSL model.  Instead,  we observed  the opposite  effect  as  the
accuracy  either  decreased  (DC)  or  stagnated  (NLM)  with
pretraining.  However,  pretraining  the  LSTM  module  on  an
image retrieval  task yielded promising results.  Without  fine-
tuning, the raw image retrieval model gave result comparable
to  medium-sized  (1000  classes)  training  sets.  For  larger
training sets, fine-tuning further improved the accuracy of the
raw image retrieval module. Most importantly, the benefits of
pretraining as an image retrieval task persisted even for larger
sizes  of  training set.  This confirmed our hypothesis  that  the
LSTM module would gain from both pretraining on different
domain data (narrative/descriptive captions) and fine-tuning on
similar domain data (descriptive dictionary definitions.)
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