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Visually grounded word embeddings for zero-shot learning
of visual categories
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Abstract: Traditional object recognition models are bound to a close-world assumptions as they can only discriminate
among a finite set of visual classes predefined by the annotated training data available to learn from. This contrasts with
the human ability to continuously learn and define new visual classes using natural language. Zero-shot learning (ZSL)
models are able to generalize to unseen classes beyond the finite set of class labels on which they have been trained.
To do so, ZSL models embed visual class labels in a high-level visual feature space, or semantic space, shared by both
training and test classes. The information shared in this label space by training and test classes allows to transfer the
visual knowledge learned from the set of training classes to the unseen set of test classes. Early works on ZSL use
small domain datasets for which manually annotated visual attributes are used as high-level representations of the vi-
sual classes. However, the complexity of designing a finite set of visual primitives able to describe the wide variations
in the appearance of naturally occurring object seems untractable so that such manual labeling approach is unlikely to
scale to generic object recognition settings. In this paper, we represent visual classes as words and propose to learn
their high-level visual feature representations from the co-occurence statistics of their label in large text corpora. Our
method can be seen as implicitly learning visually-grounded word embeddings. We perform preliminary experiments
on the task of large-scale ZSL using the Imagenet dataset.

1. Introduction
Classification using convolution neural networks (CNN) has

become the backbone of modern computer vision systems. Ob-
ject detection models, for instance, combine the standard clas-
sification architecture of CNN with a bounding box regression
model. Semantic segmentation models augment the standard
classification CNN architecture with a deconvolution path to per-
form pixel-wise classification. Trained on large amount of high
quality labeled data as made available by the Imagenet dataset
[1], CNNs have become very accurate at recognizing generic ob-
jects in images, with studies reporting higher precision than the
human average [2]. However, these systems are fundamentally
limited by the underlying close-word assumption of traditional
classifiers, i.e., they can only discriminate among the finite set of
training classes on which they have been trained.

Although CNNs have become very precise on standard generic
object recognition benchmarks, deploying an efficient discrimi-
native model, in practice, requires both a significant amount of
training data and expertise to fine-tune a CNN on the specific
task at hand, which hinders the adoption of this technology. An
ideal generic object recognition system should allow its user to
seamlessly specify task-specific visual classes by naming them
at inference time, without the need for expensive data collection
and model fine-tuning. The ZSL paradigm addresses this problem
and holds the promise to deliver truly generic object recognition
systems.
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Figure 1 illustrates training and inference steps of ZSL models.
The key idea behind ZSL is to embed visual classes into a high-
level visual feature space. At training time, ZSL models learn a
mapping from the raw image input space to the high-level visual
feature space using the feature representations of training classes.
Given a model f , parameterized by a set of parameters θ and a
distance metric dist, ZSL models can be trained by minimizing
the distance between model outputs and ground truth embeddings
with regards to the model’s parameters over a set of labelled train-
ing data.

fθ : x→ y (1a)

fθ : R3×h×w → Rd (1b)

∀(xi, yi) ∈ Tr, (xi, yi) ∈ R3×h×w × Rd (1c)

θ∗ = argminθ(E(xi ,yi)∈Trdist( f (xi), yi) (1d)

In a ZSL setting, the full set of classes is typically split into two
disjoint sets of training and test classes, and classes from both sets
are embedded into a shared high-level visual feature label space.

Ytrain = {yi, i ∈ [0,Ntrain]} (2a)

Ytest = {yi, i ∈ [0,Ntest]} (2b)

Ytest ∩ Ytest = ∅ (2c)

∀y ∈ Ytrain ∪ Ytest, y ∈ Rd (2d)

At inference, a test image x can be classified seamlessly among
training or test classes by nearest neighbor search of f (x) in label
space among their respective label sets Ytrain or Ytest.
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Fig. 1 Illustration of the ZSL process. A set of visual attributes

y∗ = argminy∈Y dist( f (x), y) (3)

ZSL models rely on visually discriminative high-level feature
representations of the visual classes y to transfer the discrimina-
tive knowledge learned from known training classes Ytrain to un-
seen classes Ytest. In standard benchmark like AwA [7], class
labels are made available as manual annotations of the visual
class attributes as illustrated in Figure 1. However, such anno-
tation does not exist for the large-scale generic object recognition
problem in which we are interested. In this paper, we propose a
method to learn such kind of representation from text data.

Previous works [3] have proposed to embed visual classes in a
word embedding space. Word embeddings are the implementa-
tion of the distributional hypothesis [4] that states that the mean-
ing of words can be viably defined by the context in which they
appear. Word embedding models compute distributed represen-
tations of words that have been shown to encode interesting rela-
tionships between words as simple vectorial operations. Most
famously, word embeddings have shown to efficiently express
analogies such as ”A man is to a woman what a boy is to a girl”
by the relationship

vman − vwoman ≈ vboy − vgirl

This suggests that word embeddings implicitly learn to represent
abstract notions such as gender along specific dimensions of the
embedding space.

The capacity to compose abstract notions through simple arith-
metic between distributed represetations is very attractive for
ZSL. To illustrate the relevance of this idea, consider the zero-
shot recognition ability of humans. One might be able to recog-
nize a zebra without having ever seen one if one has been told
that a zebra looks very much like a horse covered in black and
white stripped patterns. This description requires both low level
visual clues such as the black and white stripped patterns, high
level visual concept like a horse and the fuzzy notion of similar-
ity between a horse and a zebra’s shapes. An ideal visual feature
space would be able to capture the abstract notion of a horse-like
shape of both animals by an approximate relationship similar to a

word embedding analogical relationship as:

vhorse − vcolor ≈ vzebra − vstripes − vblack − vwhite

Word embeddings are learned in an unsupervised manner
from words co-occurence statistics in large text corpora, with-
out any visual supervision so the reason why they have proven
to provide visually discriminative class representations for ZSL
in previous works [3] is not straightforward. In Section 3.1,
we briefly present the word2vec [5] skip-gram with negative
sampling model and we provide an explanation as to why co-
occurence statistics can provide visually discriminative clues in
section 3.2. In section 3.3, we build on this explanation and pro-
pose a method to learn visually grounded word representations.
Section 4 presents preliminary results using the learned word rep-
resentations on the task of ZSL using the Imagenet dataset.

2. Related work
2.1 Visual class embeddings for ZSL

Most work on ZSL focus on small domain image datasets that
provide visual attribute representations of classes. Among the
most widely used benchmarks are the AwA dataset[7], which
consists of 50 classes of animals annotated with 85 visual at-
tributes and the CUB dataset[8], which consists of 200 bird
species annotated with 312 binary attributes. More related to our
work, [3] proposed to use word embeddings as visual class rep-
resentations to perform ZSL in a large scale setting using the Im-
agenet dataset. Other works have proposed to learn visual class
representations from co-occurence statistics of visual classes in
natural images [9], text documents [10] or knowledge bases [11].

2.2 Visually grounded word embeddings
As word embeddings have proven useful in computer vision to

perform ZSL, computer vision models have similarly found their
way in natural language processing applications. In [12], the au-
thors proposed multi-modal word embeddings obtained by con-
catenation of word embeddings and CNN-extracted visual fea-
tures. Most related to our work, [13] proposed a multi-modal

c⃝ 2018 Information Processing Society of Japan 2

Vol.2018-CVIM-211 No.5
2018/3/1



IPSJ SIG Technical Report

skip-gram model by augmenting the original word2vec model
with visual supervision to compute multimodal word embed-
dings. They evaluate their model on both semantic similarity and
zero-shot learning tasks.

3. Proposed method
3.1 Original word2vec SGNS model

In this section, we give a brief overview of the Skip-gram with
negative sampling (SGNG) model to illustrate why word embed-
dings yield visually discriminative representations. As we omit
several important details of the training procedure for brevity, in-
terested readers are referred to the original paper [5] and to the
many in-depth analysis and explanations of this model available
on-line for rigorous definition of the model. Let V be a vocabu-
lary of n words. Let us assume a text corpus of T words and de-
note by p(v) the occurrence frequency (unigram distribution), of
words v ∈ V in the corpus. The original word2vec model learns
two distinct d-dimensional representation per words: a context
embedding c and a word embedding w:

∀v ∈ V, cv ∈ Rd, wv ∈ Rd

Given a window size s, learning is performed by iterating over the
full corpus T , minimizing a cost function l with respect to both
representations w and c by stochastic gradient descent:

L(T ) =
1
T

T∑
t=1

s∑
i=−s

l(wt, ct+i) (4)

In the SGNS model, the loss function f is defined as:

l(w, c) = log(σ(w · c)) −
k∑
0

Ecn∼p(n)log(σ(w · cn)) (5)

where k is a negative sampling factor parameterizing the model
and the esperance term is estimated by randomly drawing a single
sample from the unigram distribution.

3.2 Visual clues in words co-occurence statistics
Let us denote by

p(i| j) = p(i, j)
s × p( j)

the co-occurrence frequency of word i within the context of word
j for a context window of given size s. Given this notation, we
can merge equations (4) and (5) into the following formulation:

L(T ) =
1
T

T∑
t=1

s∑
i=−s

(
log(σ(wt · ct+s))

−
k∑
0

En∼plog(σ(wt · cn))
) (6a)

L(T ) =
1
T

T∑
t=1

s∑
i=−s

log(σ(wt · c))

− 1
T

T∑
t=1

s∑
i=−s

k∑
0

En∼plog(σ(wt · cn))

(6b)

L(T ) = Ew j∼p( j),ci∼p(i| j)log(σ(w j · ci))

− k × Ew j∼p( j),ci∼p(i)log(σ(w j · ci))
(6c)

Equation (6c) highlights the fact that word embeddings are the
results of two optimization constraints. The left part of equation
(6c) draws word embedding vectors wi closer (in the sense of the
dot product similarity measure) to context vectors c j with whom
they share high probability of co-occurrence p(i| j). The second
term pushes word embeddings w j further apart from context vec-
tors ci randomly drawn from the corpus unigram distribution p(i).

Table 1 Co-occurrence probabilities of visual class words with visually dis-
criminative words

horse zebra pineapple
leg 2.3 · 10−5 6.5 · 10−3 0.0
hoof 7.3 · 10−5 3.2 · 10−5 0.0
stripes 2.2 · 10−5 1.4 · 10−3 0.0
yellow 1.2 · 10−4 2.9 · 10−4 7.1 · 10−4

Consider the co-occurrence statistics of generic visual class la-
bels, like ”horse”, ”zebra”, or ”pineapple” with visual attributes
such as ”hoof”, ”leg”, ”stripes”, or ”yellow”. As shown in Figure
2, horse and zebras have higher co-occurrence probability with
their respective attributes ”hoof” and ”leg” than pineapple does.
Similarly, pineapple has higher co-occurrence probability with
the attribute ”yellow”. Hence, the word embedding of pineap-
ple is drawn closer to the context embedding vector of yellow
than the word embeddings of horse and zebras by the optimiza-
tion process. Both horse and zebras word embeddings are drawn
closer than pineapple to the context embedding vector of hoof.
The same principle also applies for more fine-grained visual dis-
parities as we can see that stripes has higher co-occurrence prob-
ability with zebra than it has with horse.

3.3 Learning Visual Word Embeddings
In the previous paragraph, we showed how word co-occurrence

statistics contain visually discriminative information, which ex-
plains why word embeddings visually discriminative high-level
feature representations of visual classes for ZSL. However, word
embeddings are learned in an unsupervised manner, without any
visual information. In this paper, we conjecture that learning
word embeddings with supervised supervision would yield more
visually discriminative visual feature representations.

Our method works by embedding visual features and word rep-
resentations in a shared embedding space. To do so, each visual
class is first associated to a unique word label w (i.e. ”zebra” or
”pineapple”). We denote by xw,i the i-th image sample of class
w. For readability, we refer by xw to any randomly sampled im-
age of class w. We then pretrain a Resnet-50 [6] on a subset of
the Imagenet dataset that we use as training classes. We set the
dimension of the top Resnet-50 layer to the word embeddings di-
mension d = 300. We use the activation values of this layer as
feature representation of raw input images. Given a sample im-
age xw of class w, we denote by f (xw) the d-dimensional feature
vector extracted as the CNN’s top layer activation values.

The starting point of our method is equation (6c), which we
first simplify by removing the logarithm and sigmoid forms. We
then substitute the word embedding vectors with the visual fea-
ture of a randomly sampled image of the corresponding class:
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L(T ) = Ew j∼p( j),ci∼p(i| j)log(σ(w j · ci))

− k × Ew j∼p( j),ci∼p(i)log(σ(w j · ci))
(7a)

L(T ) = Ew j∼p( j),ci∼p(i| j)w j · ci

− k × Ew j∼p( j),ci∼p(i)w j · ci
(7b)

L(T ) = Ew j∼p( j),ci∼p(i| j) f (xw j ) · ci

− k × Ew j∼p( j),ci∼p(i) f (xw j ) · ci
(7c)

Different from the original word2vec model, our model only
learns one representation for each word, the context embedding
vectors, as we substitute the word embedding term of the original
model with the visual supervision signal. Our model learns the
context vector representations c from a set of training word labels
WTr. At test time, unseen visual class labels are computed as:

w j = Eci∼p(i| j)ci (8a)

w j =

n∑
i=0

p(i| j)ci (8b)

Let Wtest = {w j, j ∈ [1,Ntest]} be a set of Ntest unseen test
classes. An input test image x can be classified among Wtest by
retrieving the test class labels with highest similarity according to
the dot-product similarity measure:

j∗ = argmaxw j∈Wtest (w j · f (x)) (9)

4. Experiments and results
We test our learned representations on the the task of large-

scale ZSL. We use the validation split of the ILSVRC2012 clas-
sification dataset as test set, which consists of 1000 carefully
curated classes for which 50 test images are given. We use
the remaining 20,000 classes of the Imagenet dataset as training
classes. As mentioned in the previous section, we use a Resnet-
50 CNN pretrained on the training set to extract visual features
from raw images.

Table 2. presents our results in terms of top − k accuracy as
is traditionally reported in ILSVRC challenges. Our results show
that our model does learn visually discriminative visual represen-
tations as the accuracy scores are way above chance. For time
constraints, we could not include comparisons to different mod-
els. In future work, we will present in-depth evaluation of our
model together with comparisons with baseline models.

Table 2 top-k classification accuracy on the validation split of the
ILSVRC2012 image classification dataset

top-1 top-5 top-10
accuracy 3.1% 9.5% 21.0%

5. Conclusion
In this paper, we argued that visual class word labels share

higher co-occurence probability with their visual attributes than
they do with random words, which explains why word em-
beddings can provide visually discriminative representations of
visual classes. Based on this idea, we modified the original
word2vec algorithm to include visual supervision provided by vi-
sual features extracted from raw images by a pretrained CNN.

Our model represents words and images in a shared embedding
space so that the high level visual feature representations can
be directly estimated in the visual space from the co-occurence
statistics of its word label. Preliminary results showed that our
learned representations are visually discriminative enough to al-
low for some zero-shot recognition of unseen visual classes.
More experiments and in-depth evaluation of our model are still
needed to validate our approach.
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