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Abstract—This paper proposes a novel approach based on a
supervised 　 Generative 　 Adversarial 　 Networks (GANs) 　
model that forecasts the crude oil prices with Adaptive Scales
Continuous Wavelet Transform (AS-CWT). In our study, we
first confirmed that the possibility of using Continuous Wavelet
Transform (CWT) to decompose an oil price series into various
components, such as the sequence of days, weeks, months and
years, so that the decomposed new time series can be used as
inputs for a deep-learning (DL) training model. Second, we find
that applying the proposed adaptive scales in the CWT method
can strengthen the dependence of inputs and provide more useful
information, which can improve the forecasting performance.
Finally, we use the supervised GANs model as a training model,
which can provide more accurate forecasts than those of the
naive forecast (NF) model and other nonlinear models, such as
Neural Networks (NNs), and Deep Belief Networks (DBNs) when
dealing with a limited amount of oil prices data.

I. INTRODUCTION

Oil price forecasting has many implications for the eco-

nomic growth of countries as well as providing useful in-

formation that helps international investors to diversify risk.

According to BP’s Statistical Energy Outlook, crude oil is a

vital fuel, accounting for 32.9% of global energy consumption

in 2016, and will continue to play an important role until

2035. It is generally accepted that the oil price fluctuations

have a significant influence on macroeconomic aggregates,

such as the GDP and inflation of oil-exporting and -importing

countries, as one of the most actively traded commodities in

the world [1]. Thus, it is important to focus on improving

the forecasting accuracy of oil prices for both real economy

and financial markets. However, oil price forecasting is rather

challenging because the crude oil prices are usually considered

to be a nonlinear and non-stationary time series, and are

interactively affected by many factors.

Research on crude oil price forecasting has lasted for

decades, with many machine learning techniques being utilized

to mine the inner complexity of oil prices. Among these

approaches, neural networks (NNs) have been commonly used

because NN models can create a breakthrough opportunity

in the analysis of the non-linear behavior of the crude oil

prices [2], [3]. For example, Moshiri et al. [4] compared

linear economic models (ARMA and GARCH) with nonlinear

NN models, and found that NNs are superior and produce

a more statistically significant forecasting. Wang et al. [5]

forecast monthly prices by using an NNs-based model, and

claimed superior performance by the model. However, shallow

architecture models, such as the the NN-based forecasting

models mentioned above, cannot model the complex patterns

and volatile behaviors of oil prices, which are influenced by

numerous factors (Bengio et al. [6]).

Recently, the deep-learning (DL) approach is becoming a

mainstream of machine learning technique, and has dramati-

cally improved the performance of various nonlinear modeling

tasks due to the multi-layers architecture. Hinton et al. [7]

proposed a greedy layer-wise training strategy which solves

the training problem in deep neural networks (DNNs). And,

Yu et al. [8] have applied the DL approach to the oil price

forecasting. However, there are two problems for oil prices

forecasting when using the DL models. First, deep learning

models are restricted to problems with moderate dimensions

for training data. The original oil price is a one-dimensional

sequence that is not suitable for DL approaches. Thus, the

oil price data need to be transformed to high dimensional

data before training the DL models. Second, DL models

need sufficient data for training. But, compared with the size

of training data used in speech signal processing or image

processing tasks, the oil price data is insufficient for DL

models.

In this paper, to overcome the two problems mentioned

above, we propose a novel method that uses adaptive scales

CWT (AS-CWT) to decompose one dimensional oil price data

to high-dimensional features, and then train them with the

supervised GANs model.

Wavelet analysis has recently been used in the economic

fields of time-series analysis, such as business cycle synchro-

nization, commodities, and to study the co-movement among

financial markets. In oil price forecasting, Jammazi et al. [9]

combined the wavelet transform and a NN to forecast the crude

oil monthly price. Tang et al. [10] constructed a multiple-

wavelet recurrent NN model to analyze crude oil monthly

prices. Different from these papers, which predict the monthly

oil prices, in our paper, we aim to forecast the daily oil price

series by using the AS-CWT method with supervised GANs

models. The proposed AS-CWT method can systematically

capture the oil prices of different temporal scales by using

adaptive scales, which can then represent different oil prices

levels ranging from daily prices to yearly prices levels, but

better optimized.
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Moreover, to overcome the difficulty of a limited amount

of training data, we propose a supervised GANs model. The

GANs are able to take advantage of an adversarial loss forcing

the generated data to be indistinguishable from real data. This

is particularly powerful for image-generation tasks, but it has

not yet begun to be applied in economic fields. Thus, due to

supervised learning’s ability to regularize the training process

of a GANs model, we developed a novel supervised GANs

model that enables the price-forecasting function to be trained

from two sets of labeled oil prices from recent to future

domains.

In the remaining sections of this paper, previous literature,

including CWT and GANs, are reviewed in Section II. Then,

we describe our proposed oil price-forecasting method in

Section III. Section IV gives the detailed stages process of

experimental evaluations, and Section V presents our conclu-

sions.

II. RELATED WORKS

Our oil price-forecasting system uses GANs combined with

supervised learning to capture high-order conversion-friendly

CWT oil prices features. In this section we briefly review how

to decompose one dimensional oil prices to high-dimensional

CWT oil features using continuous wavelet transform, and

introduce the related fundamental GANs model.

A. Continuous Wavelet Transform

It is well known that oil prices forecasting is influenced

both by, short-term dependencies, such as daily levels, and by

long-term dependencies, such as yearly levels. A CWT is used

to decompose a signal into wavelets and is an excellent tool

for mapping the changing properties of non-stationary signals.

Consequently, CWT is the best method for the analysis of

international crude oil. The continuous wavelet transform of

the oil prices is defined by

W (τ, t) = τ−1/2

∫

∞

−∞

p (x)ψ

(

x− t

τ

)

dx (1)

ψ (t) =
2√
3
π−1/4

(

1− t2
)

e−t2/2, (2)

where τ is the scaling factor, t is the translating factor, p (x)
represents the input recent oil price series and ψ is the Mexican

hat mother wavelet. The original signal p can be recovered

from the wavelet representation W (p) by inverse transform

[11]:

p(t) =

∫

∞

−∞

∫

∞

0

W (p)(τ, x)τ−5/2ψ(
t− x

τ
)dxdτ (3)

The coefficients of the continuous wavelet transform have

a significant amount of redundant information. Therefore, it

is reasonable to sample the coefficients in order to reduce

redundancy. Thus, in our proposed AS-CWT method, we

decompose an oil price series into useful sets (daily level,

weekly level, monthly level and yearly level) of components

results using the adaptive scales.

B. Generative Adversarial Networks

Generative Adversarial Networks (GANs) [12], [13] have

achieved impressive results in image generation [12], [14],

image editing [13], and representation learning [15]. Key to

the success of the GANs is learning a generator distribution

PG(x) that matches the true data distribution. It consists of

two networks: a generator G that transforms noise variables

z ∼ PNoise(z) to data space x = G(z) and a discriminator D

that assigns probability p = D(x) when x is a sample from

the PData(x) and assigns probability 1−p when x is a sample

from the PG(x). In a GAN, D and G play the following two-

player minimax game with the value function V (G,D):

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]

+ Ex∼pz(z)[log(1−D(G(z)))]
(4)

This enables discriminator D to find the binary classifier

that provides the best possible discrimination between true

and generated data, and simultaneously enables generator G

to fit PData(x). Both G and D can be trained using back-

propagation. Although the GANs models have great effective-

ness for image-generation tasks, unlike normal object image

generation, the dissimilarities between the source (recent oil

prices series) and target (future oil prices series) are very small.

Therefore, without supervised learning, the source features

sometime are hard to be regularized to the target features due

to the problem of insufficient data. Thus, in our forecasting

system, we propose GANs combined with supervised learning.

III. OIL PRICE FORECASTING USING SUPERVISED GANS

WITH CWT FEATURES

A. Adaptive Scales CWT

In the current paper, we apply an adaptive scales method to

decompose an oil price series using a wavelet transform. As

shown in the left part of Fig. 1, there are two main steps in

calculating the adaptive scales. 1) We investigate the variability

in each temporal level as a rich source of information for

studying the degree of impact of every level in oil prices

forecasting as a function of influencing strength, and,

2) calculate adaptive scaling factors with the influencing

strength. The details of the steps in this process are described

below.

1) Let x∗ ∈ {Xw, Xm, Xy} be values of each the temporal

level with Xw, Xm and Xy representing the week, month and

year levels, respectively. Because the oil price will not change

over the weekends and on holidays, we denote week level

Xw=5, month level Xm=20 and year level Xy=240, respec-

tively. Then, we calculate each temporal level’s influencing

strength which represents the proportion of influence among

all the temporal levels. As shown in the first part of Fig. 1,

we define some functions: relative distance (RD), different

area (Da) and basic area (Ba). These functions are used for

calculating the influencing strength. For example,Da(Xw)
and Ba(Xw) represent the different area and basic area of the

week level between the recent oil price and future oil price.
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Fig. 1. Illustration of calculating the adaptive scales for CWT and using them to decompose the oil prices series. On the left, the two main steps in calculating
the adaptive scaling factors are shown, and on the right, samples of CWT features decomposed by AS-CWT are shown.

Now, let’s consider how the relative distance function RD

calculates the relative distance between the recent oil price

and future oil price in each temporal level such that:

RD(x∗) =
Da(x∗)

Ba(x∗)
(5)

where Da and Ba formulas are calculated as below:

Da(x∗) = |WR(x
∗)−WF (x

∗)| (6)

Ba(x∗) = min (|WR(x
∗)|, |WF (x

∗)|) (7)

In the Da and Ba functions, WR(x
∗) represents the continu-

ous wavelet transform function of a recent oil price series in

different temporal level x∗, and WF (x
∗) uses the future oil

price series as input. Their transform functions are defined by

WR(x
∗, t) = (x∗)−1/2

∫

∞

−∞

prψ

(

x− t

x∗

)

dx

WF (x
∗, t) = (x∗)−1/2

∫

∞

−∞

pfψ

(

x− t

x∗

)

dx

(8)

ψ (t) =
2√
3
π−1/4

(

1− t2
)

e−t2/2, (9)

where ψ is the Mexican hat wavelet, pr and pf represent the

recent and future oil prices series input signal, respectively.

And, the influencing strength of each temporal level can

be ranked by

Px∗ =
RD(x∗)

∑

x∗∈X RD(x∗)
(10)

Then, we can draw the optimized number of scales for CWT

in each temporal level with the influencing strength from

a multinomial distribution:

λX ∼Multinomial(N,PX),

λx∗ ∈ λX = (λXw
, λXm

, λXy
),

Px∗ ∈ PX = (PXw
, PXm

, PXy
)

(11)

where N is the total number of scales, which can be set in dif-

ferent values, vectors PX are made up of all the influencing

strengths, and λX represents the aggregation of the number

of scales in all temporal levels. Therefore, λx∗ can represent

the number of scales in each temporal level.

2) The second step is applying the number of scales of each

temporal level calculated in first step to the CWT function. As

we know, weeks are made up of days, months are made up

of weeks and years are made up of months. Thus, we can use

the λx∗ (number of scales) to calculate the adaptive scaling

factor of each temporal level as:

τx∗ = (τXw
, τXm

, τXy
),

τXw
= Xw +Xd ∗ iw, iw = 1, ..., λXw

,

τXm
= Xm +Xw ∗ im, im = 1, ..., λXm

,

τXy
= Xy +Xm ∗ iy, iy = 1, ..., λXy

(12)

where τXw
, τXm

and τXy
represent the adaptive scaling factor

for week, month and year, respectively. They are all calculated

by the number of scales λx∗ and the values of the previous

level. For example, scaling factors for yearly level (τXy
) are

calculated by the number of scales of years (λXy
) and monthly
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values Xm. In the first step, we have defined Xw, Xm and Xy

to 5, 20 and 200, respectively which can represent the basic

value of each temporal level. Here, Xd = 1 represents the

value of daily level.

After calculating the scaling factors of each temporal level,

we adopt CWT to decompose the contour oil price series

with these scaling factors and our oil prices series can be

represented by separating components given by

W (τx∗ , t) = (τx∗)−1/2

∫

∞

−∞

p (x)ψ

(

x− t

τx∗

)

dx (13)

The original signal is approximately recovered by

p(t) =

∫

∞

−∞

∫

∞

0

W (p)(τx∗ , x)τ−5/2ψ(
t− x

τx∗

)dxdτ (14)

B. Training model

Before training our proposed supervised GANs model, we

reshape the AS-CWT features to 2D features of N × N

size. N is the total number of scales, which is set in the

AS-CWT features process part (Sec. III-A). As shown in

Fig. 2, N is set to 32. The supervised GANs is comprised

of two generators (Gz , Gx) and a discriminator (Dy). Here,

Gz is responsible for generating realistic samples close to the

content of the target dataset y ∼ PData(y) from the noise

features z ∼ PNoise(z), while Gx is responsible for generating

realistic samples from the input dataset x ∼ PData(x). D is

responsible for determining true and generated data to use in

discrimination. In this setting, the objective function is written

as

LGAN = LGx
(Gx, Dy, x, y) + LGz

(Gz , Dy, z, y),

LGx
= Ey∼Pdata(y)

[logD(y)]

+ Ex∼PData(x)
[log(1−D(Gx(x))]

LGz
= Ey∼Pdata(y)

[logD(y)]

+ Ez∼PNoise(x)
[log(1 −D(Gz(z))]

(15)

where Gz and Gx try to minimize this objective against an

adversarial Dy that tries to maximize it, and our final objective

is

(Gz)
∗, (Gx)

∗ = arg max
Dy

min
Gz,Gx

LGAN(Gz , Gx, Dy) (16)

Without x, the GANs model could still learn a mapping

from z to y, but would produce nondeterministic outputs,

and, therefore, fail to regularize the training process due to

the problem of insufficient data. Thus, in this model, adding

the supervised process can enhance robustness of the GANs’

training.

The training procedure of the proposed approaches is briefly

portrayed in Alg. 1. Throughout the training process, genera-

tors, Gx and Gz are optimized to learn the generated oil price

which cannot be distinguished from target future oil price by

corresponding discriminators Dy .

Algorithm 1 Training procedure of supervised GANs

Require: AS-CWT features (32 × 32) sets processed from source
recent oil price x and target future oil price y, generator Gx

with generator parameters θx and discriminator parameters wx,
generator Gz with generator parameters θz , and discriminator
parameters wz , batch size m, and the epochs n.
1: Initialize the parameters θx, θz , wx and wz , randomly.
2: repeat
3: for(i = 1; i < n+ 1; i = i+ 1) do
4: sample AS-CWT features zk ⊆ z, xk ⊆ x, yk ⊆ y,
k ∈ {1, ..., m}
5: update wx, θx to minimize 1

m

∑m

k=1
LGx(xk, yk)

6: update wz , θz to minimize 1

m

∑m

k=1
LG(zk, yk)

7: end for
8: update wx, wz θx, θz to minimize 1

m

∑m

k=1
LGAN

9: until convergence

Fig. 2. Illustration of feature extraction and calculating the loss of supervised-
GANs. x and y represents the 2D-features processed from recent oil price and
future oil price, respectively. y∧ and y′ represent the generated features from
noise features and the CWT features of recent oil prices, respectively.

IV. EXPERIMENTS

A. Experimental Setup

In this study, we use Brent crude oil future of the front-

month futures contracts (ICE futures Europe). The data set

covers the period from June 27, 1988, to November 4, 2016,

consisting of 7300 observations. In the datasets, 7000 days’ oil

price values were chosen as training data, and the remaining

300 days’ values were chosen for the evaluation.

To evaluate the proposed supervised GANs model, we com-

pared the results with several state-of-the-art models, which

are listed below.

• Naive Forecast (NF): The traditional economic models

are based on the navie forecast. As described in [16],

in the NF, the oil price tomorrow is equal to the oil

price today. And, at the same time, the probability of

an increase (or decrease) in the oil price the next day is

just 50%.

• NNs: Nonlinear neural network with shallow architec-

ture [17].

• DBNs: Deep neural networks with multi-layers archi-

tecture; among the deep-learning models, Deep Belief

Networks (DBNs) have demonstrated excellent perfor-

mance [18].
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• Supervised-GANs (the proposed method): This is our

proposed method, which uses GANs to train oil price

features with the supervised learning.

To evaluate the effectiveness of the proposed AS-CWT

method, we compared the results when using the AS-CWT

method and when not using the AS-CWT method for all non-

linear models (NNs, DBNs, supervised GANs).

B. Training Procedure

Table I details the network architectures of the generator

Gx, Gz , and discriminator Dy. The symbols ↓ and ↑ indicate

down-sampling and up-sampling, respectively. To upscale and

downscale, we used convolutions and backward convolutions

with stride 1, respectively.

In the generator networks (Gx, Gz), similar to Johnson et

al. [19], we use batch normalization (BNorm) [20] and all

convolutional layers are followed by ReLU nonlinearities [21]

with the exception of the output layer. Input and output are set

as the 2D training features (32× 32). Each generator network

contains two stride-1 convolutions to downsample the input,

followed by two residual blocks [22], and two fractional stride

convolutions with stride 1
2 to upsample.

For the discriminator network (Dy), we use a convolutional

PatchGAN classifier [23]. The patch size at which the discrim-

inator operates is fixed at 10× 10.

TABLE I
DETAILS OF NETWORK ARCHITECTURES OF F , G, Dx , Dy .

Gz (Input: 32×32 features with random noise, Output: 32×
32 generated features

2×2 32 conv.↓, BNorm, ReLU
2×2 16 conv.↓, ReLU

residual blocks

[

2× 2 16 conv. ReLU
2× 2 16 conv. ReLU

]

× 2

2×2 16 conv.↑, ReLU
2×2 32 conv.↑, BNorm, ReLU

Gx (Input: 32 × 32 AS-CWT features processed by recent
oil price x, Output: generated 32× 32 AS-CWT features)

2×2 32 conv.↓, BNorm, ReLU
2×2 16 conv.↓, ReLU
2×2 16 conv.↑, ReLU
2×2 32 conv.↑, BNorm, ReLU

Dy (Input: 32×32 AS-CWT features, Output: 1 Probability)

2×2 16 conv.↓, ReLU
2×2 32 conv.↓, BNorm, ReLU
128 fully connected, BNorm, ReLU
1 fully connected, sigmoid

During preprocessing, we normalized the recent oil price

series and future oil price series to zero-mean and unit-

variance. Then, we transformed them to 32 × 32 AS-CWT

features. When training Gx, Gz and Dy , we use the Adam

optimizer [24] with a mini-batch size. The learning rate was

set to 0.0001 for Gx, 0.0002 for Gz , and 0.0001 for Dy ,

respectively. The momentum term was set to 0.5.

To clarify the characteristics of our proposed method, as

described above, we implemented NNs and DBNs model for

comparison. The NNs model has 2 hidden layers, and the

numbers of units in the input, hidden, and output layers are

TABLE II
DA AND RMSE RESULTS FOR MODEL COMPARISON.

NF NNs DBNs GANs NNs+ DBNs+ GANs+

RMSE 0.914 0.873 0.816 0.764 0.854 0.772 0.768
DA 0.414 0.455 0.515 0.466 0.475 0.523 0.572

Notes: NF denotes Naive Forecast; NNs, DBNs and S-GAN
represent the NNs model, DBNs model and supervised GANs
model without AS-CWT method; (+) represents using the AS-
CWT method.
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Fig. 3. Top: Target oil price (red) and the predicted price by supervised GANs
without AS-CWT (black) and with AS-CWT (blue), Bottom: The predicted
errors

[N, 2*N, 2*N, N]. We use the DBNs model proposed by

Nakashika et al. [25], which contains two different DBNs for

source oil price (unit [N, 2*N, N]) and target oil price ([N,

2*N, N]), and the connected NNs (unit [N, 2*N, N]). Here,

N is the dimensions of the input and output features.

C. Results

To evaluate the forecasting performance, we calculate the
root mean square error (RMSE) and directional accuracy (DA)
between the actual values and predicted values, which are
often used in the literature [9], [26]. The RMSE can reflect
the disparity between the actual values and predicted values,
while the DA can represent the directional accuracy of each
day between the actual data and predicted data, which can be
expressed as follows:

RMSE =

√

√

√

√

1

N

N
∑

t=1

(V a
t − V

p
t )2 (17)

DA =
1

N

N
∑

t=1

Zt, Zt =

{

1 (V a
t − V a

t−1)(V
p
t − V

p
t−1

) ≥ 0

0 otherwise

(18)

where V a
t and V

p
t denote the actual value and predicted value,

respectively. N represents the number of days in the testing

data. A lower RMSE means a smaller difference between the

actual value and predicted value, while a lager DA represents

a higher directional accuracy of the predicted value. Thus,

the lower RMSE and higher value of DA represent a better

forecasting performance of the model.

Table II shows the results of each model for oil price

forecasting. From Table II, 1) we can see that all the NNs
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models achieve larger DA and smaller RMSE values than the

NF model, confirming that the AI-based forecasting model can

provide greater efficiency and higher accuracy. 2) Comparing

the results of NNs and DBNs, we find that implying the model

with deep layers provides higher forecasting accuracy than

the shallow architecture model. The result is in line with [6]

Bengio (2009). 3) When comparing the results of supervised

GANs with the conventional methods, the proposed supervised

GANs can obtain a better RMSE result, which represents a

better oil value forecasting effect, but it obtains worse results

than a DBNs model for DA when not using AS-CWT features.

We recognize that using original oil prices can mitigate the

over-smoothing problem, but sometimes it is hard to regular

training process of GANs. 4) When comparing the results of

models with using and without using AS-CWT features, we

can find that using the AS-CWT features can improve the

effectiveness of all models, especially supervised GANs in

regard to DA. This indicates that the AS-CWT features make

up for the shortage of convergence and stability of GANs, and

improve the directional accuracy of oil price forecasting.

Fig. 3 shows an example of oil price forecasting figures. As

shown in the top part of Fig. 3, the red curve represents the

actual oil prices in the testing part. The black curve represents

the predicted oil prices that are calculated by supervised GANs

without AS-CWT features, and the blue one represents the

predicted price calculated by supervised GANs with AS-CWT

features. At the bottom of Fig. 3 shows the predicted error of

the two training methods is shown. We can intuitively see that

using AS-CWT features can achieve a lower predicted error,

which means a better forecasting performance.

V. CONCLUSION

In this work, we develop a new forecasting methodology

based on supervised GANs with AS-CWT features to forecast

short-term crude oil prices. We first use the AS-CWT method

to systematically capture the oil prices of different temporal

scales by adaptive scales, which can then represent different

oil price levels ranging from daily to yearly levels. Then,

we develop a supervised GANs to further strengthen the

dependence and connection between the input recent oil price

and future price. We first compared the nonlinear models

(NNs, DBNs) with the traditional economic NF model. The

results show that the nonlinear models can outperform the

benchmark Random Walk model, and, a comparison between

the supervised GANs and the conventional nonlinear models

methods (NNs, DBNs) shows that our proposed model can

better forecast the values of oil prices (RMSE). Adding the

AS-CWT features can make up for the shortage of GANs in

forecasting the changing direction of oil price.
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