顔画像特徴量を用いた統計的手法によるF0推定* ☆羅里奈, 滝口哲也, 有木康雄 (神戸大)

1 はじめに

音韻知覚は聴覚情報を含む音声からだけでなく,発 話者の唇や顔の動きから得られる視覚情報からも影 響を受けることが McGurk らによって報告されてい る [1]. さらに,雑音環境下のような音声が聞き取り にくい状況において,発話者の顔,特に唇の動きから 発話内容を理解しようとすることや,唇の動きと音声 が一致していない場合に,唇の動きに影響されて発 話内容を誤って理解してしまうことがあることも知 られている.一般的に,動画像のみから得られる言語 情報は音声発話に比べて少ないため,VTSC は困難 なタスクであると考えられるが,この技術により,音 声障害者のコミュニケーション支援,音声が欠落した 映像からの発話復元など,様々な応用が考えられる.

本タスクにおいては、二つのアプローチが考えら れる. 一つは、リップリーディングと TTS (Text-To-Speech synthesis) を組み合わせるものである。この アプローチでは、入力された唇の動きからリップリー ディングを用いてテキスト情報を認識したのち、推定 されたテキストから TTS によって音声を生成する. もう一つのアプローチは、入力される唇の動きから テキスト情報を明示的に認識せずに直接音声へと変 換するものである。近年のリップリーディング [2] や TTS [3]の技術の発展を考慮すると、前者のアプロー チも有効であると考えられるが、リップリーディン グが認識誤りを起こした場合,出力される音声の言 語情報は入力と大幅に異なったものとなることに加 え、リップリーディングと TTS の構築には大量の学 習データが必要になるという欠点もある.従って、本 稿では後者のアプローチを採用し、この明示的にテ キスト情報を認識しないアプローチを VTSC と呼ぶ ことにする.

我々は、最尤変換による VTSC 手法を提案し、唇 動画像からの音声生成を行った [9]. 変換に用いた動 画像は 29.97fps であり、男性 1 名の連続文章発話と なっている.この文献で、統計的手法を用いることで、 無音声の動画像から発話音声を生成することができ た.しかし、より自然な音声を合成するには、F0 (Fundamental frequency)も重要な要素であり、自然 な抑揚を実現するためには、唇の動きをより精細に捉 える必要があるという課題ができた.よって、ハイス ピードカメラで撮影した 500fps の無音声動画像を用 いて F0 推定を行う. ハイスピードカメラを用いるこ とでより細かい口元の振動を捉えることができ, F0 推定に関しても有効な結果を示せると考えられる.

本稿では、ハイスピードカメラで収録した動画像 に対し GMM による F0 推定を行う.まず, 500fps の 無音声ハイスピード画像から画像特徴量を生成する, 結合された画像特徴量と音声特徴量を, GMM で近 似し、入力した画像特徴量は最尤推定を用いて音声 特徴量へと変換される。声質変換では、短時間のス ペクトル特徴量を用いるが、無音声な動画像から自 然な音声を得るためには, 唇の動きの流れを捉える 必要があるため、短時間特徴量は VTSC には適さな い.従って、本稿では、複数のフレームを考慮した長 時間画像特徴量を用いる。また、ハイスピードカメ ラで撮影した動画像を用いるので、画像データのフ レームレートの同期を取れた上で唇の動きの流れを 捉えることができる、提案手法では、無音声の動画像 から F0を推定し、連続数字発話データベースを用い て,客観評価により評価実験を行った.

関連研究としては,非負値行列因子分解を用いた 唇動画像からの音声生成も提案されているが [13],こ れは,F0 に関しての推定を行っていない.

以降,2章では,提案手法について述べる.3章で は,評価実験とその結果を示し,4章で本稿をまと める.

2 提案手法

2.1 特徵量構成法

Fig. 1 Flow of the visual feature extraction.

Fig. 1 に画像特徴量抽出の流れを示す.まず,視 覚画像から対象領域 (Region of Interest: ROI)を抽 出した後,画像の輝度値を輝度値頻度分布の平坦化 によって正規化をする.次に,画像に対して 2 次元

^{*}F0 estimation Based on Statistical methods using Facial Image Features. by Rina Ra, Ryo Aihara, Tetsuya Takiguchi, Yasuo Ariki (Kobe University)

離散コサイン変換(2-dimensional Discrete Cosine Transform: 2D- DCT)を行った後,ジグザグスキャ ンを用いて1D-DCT係数ベクトルを得る.得られた 1D-DCT係数ベクトルに対して,Z-scoreによる正規 化を行う.今回用いる動画像のフレームレートに合わ せて,音声のフレームレートも2msで分析を行うこ とで,画像と音声の同期をとった.以上の処理により 画像データに対する静的特徴量が得られる.

さらに、唇の動きを精細に捉えるため、複数フレームを考慮した長時間特徴量を求める。Fig. 2 に長時間 特徴量を抽出する流れを示す。まず、 d_x 次静的画像特 徴量ベクトル $\mathbf{x} = {\mathbf{x}_1, \mathbf{x}_2, \dots, \mathbf{x}_T}$ から、 $d_x(2L-1)$ 次元のセグメント特徴量を求める。ここで、T はフ レームの総数である。セグメント特徴量に主成分分 析 (Principal Component Analysis: PCA)を用いる ことで、 D_x 次元の、複数フレームを考慮した画像特 徴量ベクトル $\mathbf{X} = {\mathbf{X}_1, \mathbf{X}_2, \dots, \mathbf{X}_T}$ が得られる。

音声特徴量に関しては、スペクトル特徴量やF0,非 周期成分をSTRAIGHT [14]を用いて抽出した.本 稿では、非周期成分については考慮しない.F0 推定 では、静的特徴量と動的特徴量を結合したYをF0 特徴量とする.また、変換において、連続した音声特 徴量を推定するために、静的特徴量と動的特徴量間 の関係を考慮するトラジェクトリモデルを用いる.

Fig. 2 Flow of the construction of long-term image features.

2.2 最尤変換

画像特徴量と音声特徴量の同時確率は平均ベクト ル μ と分散行列 Σ をパラメータとする多変量ガウス 分布 $\mathcal{N}(.;\mu,\Sigma)$ を用いてモデル化される.モデルの 学習において,画像特徴量 \mathbf{X} と音声特徴量 \mathbf{Y} を連結 させた結合ベクトル $\mathbf{Z} = [\mathbf{X}^{\mathsf{T}}\mathbf{Y}^{\mathsf{T}}]^{\mathsf{T}}$ を用いる.確率 $p(\mathbf{Z})$ はGMMによりモデル化され,次のように表さ れる.

$$p(\mathbf{Z}|\boldsymbol{\Theta}^{(z)}) = \sum_{m=1}^{M} \alpha_m \mathcal{N}(\mathbf{Z}; \boldsymbol{\mu}_m^{(z)}, \boldsymbol{\Sigma}_m^{(z)})$$
(1)

$$\mathcal{LCC}, \ \boldsymbol{\mu}_{m}^{(z)} \succeq \boldsymbol{\Sigma}_{m}^{(z)} \ \boldsymbol{k},$$
$$\boldsymbol{\mu}_{m}^{(z)} = \begin{bmatrix} \boldsymbol{\mu}_{m}^{(x)} \\ \boldsymbol{\mu}_{m}^{(y)} \end{bmatrix}, \boldsymbol{\Sigma}_{m}^{(z)} = \begin{bmatrix} \boldsymbol{\Sigma}_{m}^{(xx)} & \boldsymbol{\Sigma}_{m}^{(xy)} \\ \boldsymbol{\Sigma}_{m}^{(yx)} & \boldsymbol{\Sigma}_{m}^{(yy)} \end{bmatrix}$$
(2)

である. パラメータ $\mu_m^{(x)} \ge \Sigma_m^{(xx)}, \ \mu_m^{(y)} \ge \Sigma_m^{(yy)}$ は それぞれ画像特徴量と音声特徴量のガウス分布のも のである. α_m は m 番目のガウス分布に対する重み である. $\Sigma_m^{(xy)} (= {\Sigma_m^{(yx)}}^{)})$ は観測データ X と Y に対 する共分散行列であり, Θ^z はすべての m に対して $\alpha_m, \mu_m^{(x)}, \mu_m^{(y)}, \Sigma_m^{(xx)}, \Sigma_m^{(yy)}, \Sigma_m^{(xy)}$ を含む GMM の パラメータ集合とする. M はガウス混合分布の総数 である.

変換段階では,入力 X が与えられた時の Y の確率 を考える.

$$p(\mathbf{Y}|\mathbf{X}, \mathbf{\Theta}^{(z)})$$

$$= \sum_{all \mathbf{m}} p(\mathbf{m}|\mathbf{X}, \mathbf{\Theta}^{(z)}) p(\mathbf{Y}|\mathbf{X}, \mathbf{m}, \mathbf{\Theta}^{(z)})$$

$$= \prod_{t=1}^{T} \sum_{m_t=1}^{M} p(m_t | \mathbf{X}_t, \mathbf{\Theta}^{(z)}) p(\mathbf{Y}_t | \mathbf{X}_t, m_t, \mathbf{\Theta}^{(z)}) \quad (3)$$

ここで、 $\mathbf{m} = \{m_1, m_2, \cdots, m_T\}$ は分布系列である. また、式 (3)の右辺の確率は次のように表せる.

$$p(m_t | \mathbf{X}_t, \mathbf{\Theta}^{(z)}) = \frac{\alpha_m \mathcal{N}(\mathbf{X}_t; \boldsymbol{\mu}_m^{(x)}, \boldsymbol{\Sigma}_m^{(xx)})}{\sum_{n=1}^M \alpha_n \mathcal{N}(\mathbf{X}_t; \boldsymbol{\mu}_n^{(x)}, \boldsymbol{\Sigma}_n^{(xx)})}$$
(4)

$$p(\mathbf{Y}_t | \mathbf{X}_t, m_t, \boldsymbol{\Theta}^{(z)}) = \mathcal{N}(\mathbf{Y}_t; \mathbf{E}_{m,t}^{(y|x)}, \mathbf{D}_m^{(y|x)})$$
(5)

ここで,

$$\mathbf{E}_{m,t}^{(y|x)} = \boldsymbol{\mu}_{m}^{(y)} + \boldsymbol{\Sigma}_{m}^{(yx)} (\boldsymbol{\Sigma}_{m}^{(xx)})^{-1} (\mathbf{X}_{t} - \boldsymbol{\mu}_{m}^{(x)})$$
(6)

$$\mathbf{D}_m^{(y|x)} = \boldsymbol{\Sigma}_m^{(yy)} - \boldsymbol{\Sigma}_m^{(yx)} (\boldsymbol{\Sigma}_m^{(xx)})^{-1} \boldsymbol{\Sigma}_m^{(xy)}$$
(7)

である.変換特徴量 $\hat{\mathbf{y}}$ は式 (3)の対数尤度関数を最 大化することで得られる.まず,分布系列mは出力 確率 $p(\mathbf{Y}|\mathbf{X}, \hat{\mathbf{m}}, \Theta^{(z)})$ を最大化する準最適な分布系 列 $\hat{\mathbf{m}}$ で近似される.従って,尤度関数の対数は,

$$\log p(\mathbf{Y}|\mathbf{X}, \hat{\mathbf{m}}, \boldsymbol{\Theta}^{(z)})$$

$$= -\frac{1}{2} \mathbf{Y}^{\mathsf{T}} \mathbf{D}_{\hat{\mathbf{m}}}^{(y|x)^{-1}} \mathbf{Y} + \mathbf{Y}^{\mathsf{T}} \mathbf{D}_{\hat{\mathbf{m}}}^{(y|x)^{-1}} \mathbf{E}_{\hat{\mathbf{m}}}^{(y|x)} + K$$
(8)

と書ける. ここで,

$$\mathbf{E}_{\hat{\mathbf{m}}}^{(y|x)} = [\mathbf{E}_{\hat{m}_{1},1}^{(y|x)}, \mathbf{E}_{\hat{m}_{2},2}^{(y|x)}, \cdots, \mathbf{E}_{\hat{m}_{T},T}^{(y|x)}]$$
(9)

$$\mathbf{D}_{\hat{\mathbf{m}}}^{(y|x)} = \text{diag}[\mathbf{D}_{\hat{m}_{1},1}^{(y|x)}, \mathbf{D}_{\hat{m}_{2},2}^{(y|x)}, \cdots, \mathbf{D}_{\hat{m}_{T},T}^{(y|x)}].$$
(10)

である.これより、変換特徴量 $\hat{\mathbf{y}}$ は、 $\hat{\mathbf{y}} = (\mathbf{W}^{\mathsf{T}} \mathbf{D}_{\hat{\mathbf{m}}}^{(y|x)^{-1}} \mathbf{W})^{-1} \mathbf{W}^{\mathsf{T}} \mathbf{D}_{\hat{\mathbf{m}}}^{(y|x)^{-1}} \mathbf{E}_{\hat{\mathbf{m}}}^{(y|x)}$ (11)

で表される.

3.1 実験条件

本稿では、0から1、〇/maru/を含む数字発話157 文をハイスピードカメラで収録した。Table 1 に収録 した連続数字発話の桁数と発話数を示す。収録した 157 発話のうち4 発話をテストデータとした. closed 実験では、テストデータを含む157発話全てを用いて 学習データを構築し, open 実験ではテストデータを 除いた 153 発話を用いて学習データを構築した。収 録は男性1名の被験者について正面で撮影した,撮影 機器は、MEMRECAM GX-1 であり、フレームレー トは 500fps を使用した.動画像のフレームレートの 比較には、500fps で収録した動画像から 30fps となる ように間引いたものを使用した. その際, 音声とのフ レームレートの差を埋めるためにスプライン補間を 適用した. 元画像の全体のサイズは 640 × 480 ピクセ ルであり、唇領域の解像度は、100×150、対象領域 を抽出し 30 × 45 ピクセルにリサイズする. DCT 静 的画像特徴量の次元数は 50 次元であり、セグメント 特徴量は PCA により 100 次元に圧縮している.

音声発話データのサンプリング周波数は 48kHz で、フレームシフトは 2ms である.各サンプルは STRAIGHT [14] によって分析することで、スペク トル特徴量と F0、非周期成分が抽出される.F0 推定 においては、スペクトル分析で得られた F0 に対数を とる.そして、動的特徴量を計算し結合した 2 次元 の特徴量を用いる.

今回, F0 推定の評価基準として, 平均二乗誤差 (Root Mean Square Error:RSME)を用いる. ここ で, $y_i^{tar} \ge y_i^{conv}$ はそれぞれ i 番目のおけるターゲッ ト, 変換の対数 F0 である.

GMM の混合数は {2,4,8,16,32,64,128} の中から 実験的に最適なものを選択する.

Table 1 Number of digit strings	
length of digits	number of data
1	10
2	25
3	30
4	33
5	29
6	5
7	23
8	2
total	157

Fig. 3 RMSE as a function of number of PCA frames.

Fig. 4 RMSE as a function of number of frame rates of video.

3.2 実験結果と考察

まず,長時間特徴量の比較を行った.Fig.3にその 結果を示す.LはFig.2で説明されており,それぞ れの open 実験(青)と closed 実験(橙)結果を示して ある.図より, close 実験においては,400 フレーム, つまり 800ms 分の情報を加味した特徴量がいい結果 となった,対して,open 実験では,各フレーム数の 大差がみられず,600 フレーム,つまり 1.2 秒分の情 報を加味した特徴量がいい結果となった.

さらに,動画像のフレームレートでの違いを比較 し, Fig. 4 にその結果を示す.図より,フレームレー ト 500fps の特徴量が良い結果となった.

目標 F0 波形と変換 F0 波形の比較結果を, Fig. 5, Fig. 6 に示す. 青線が目標波形, 赤線が変換結果であ り, Fig. 5 が close 実験, Fig. 6 が open 実験結果と なっている. close 実験の結果は, ほぼ目標波形と一 致しているが, open 実験結果では, 大きく外れた値 が見られた.

4 まとめ

本稿では,統計的手法を用いたハイスピード画像 特徴量からの F0 推定を行った.ハイスピードカメラ を用いることで,従来の低フレームレートのカメラ

Fig. 5 Plot of F0 in closed experiments.

Fig. 6 Plot of F0 in open experiments.

で収録したものよりも,唇の精細な動きを捉えられ, 良い結果を示した.これにより,無音声の唇動画像か らより自然な声を生成することができる.F0 はそれ ぞれ画像特徴量と結合し,独立した GMM によって モデル化され,目標の F0 特徴量は最尤推定によって 得られる.音声特徴量と同等のフレームレートの画 像特徴量から唇の動きの流れを精細に捉えるために, 複数フレームを考慮した長時間画像特徴量を用いた. 今後,データベースを拡張した上で,ハイスピードカ メラによるスペクトル包絡の推定を行い音声を作り 上げる.

参考文献

- H. McGurk and J. MacDonald, "Hearing lips and seeing voices," Nature, vol. 264, no. 5588, pp. 746–748, 1976.
- [2] Y. M. Assael *et al.*, "Lipnet: Sentence-level lipreading," arXiv:1611.01599, 2016.
- [3] A. van den Oord *et al.*, "Wavenet: A generative model for raw audio," CoRR,

vol. abs/1609.03499, 2016.

- [4] Y. Stylianou *et al.*, "Continuous probabilistic transform for voice conversion," IEEE Trans. Speech and Audio Processing, vol. 6, no. 2, pp. 131–142, 1998.
- [5] C. Ling-Hui *et al.*, "Joint spectral distribution modeling using restricted boltzmann machines for voice conversion," in Proc. Interspeech, pp. 3052—3056, 2013.
- [6] R. Aihara *et al.*, "Multiple non-negative matrix factorization for many-to-many voice conversion," IEEE/ACM Trans. on Audio, Speech, and Language Processing, vol. 24, no. 7, pp. 1175–1184, 2016.
- [7] K. Nakamura *et al.*, "Speaking-aid systems using GMM-based voice conversion for electrolaryngeal speech," Speech Communication, vol. 54, no. 1, pp. 134–146, 2012.
- [8] T. Toda *et al.*, "Voice conversion based on maximum likelihood estimation of spectral parameter trajectory," IEEE Trans. Audio, Speech, Lang. Process., vol. 15, no. 8, pp. 2222–2235, 2007.
- R. Ra *et al.*, "Visual-to-speech conversion based on maximum likelihood estimation," MVA2017, pp. 488-491, 2017. 5.
- [10] E. Yamamoto *et al.*, "Lip movement synthesis from speech based on Hidden Markov Models," Speech Communication, vol. 25, no. 1-2, pp. 105–115, 1998.
- [11] F. Lavagetto, "Converting speech into lip movements: a multimedia telephone for hard of hearing people," IEEE Trans. on Rehabilitation Engineering, vol. 3, no. 1, pp. 90–102, 1995.
- [12] X. Zhuang et al., "A minimum converted trajectory error (MCTE) approach to high quality speech-to-lips conversion," in Proc. INTER-SPEECH, pp. 1736–1739, 2010.
- [13] R. Aihara *et al.*, "Lip-to-speech synthesis using locality-constraint non-negative matrix factorization," in Proc. MLSLP, 2015.
- [14] H. Kawahara, "STRAIGHT, exploitation of the other aspect of vocoder: Perceptually isomorphic decomposition of speech sounds," Acoustical Science and Technology, pp. 349–353, 2006.