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1 Introduction

Emotional VC is a kind of voice conversion tech-

nique for converting prosody in speech, which can

represent different emotions, while keeping the lin-

guistic information unchanged. In a voice, the spec-

tral and F0 features can affect the acoustic and

prosodic features, respectively. So far, spectral map-

ping mechanisms have achieved tremendous suc-

cess in VC tasks, while, how to effectively gener-

ate prosody in the target voice remains a challenge.

Previous studies have shown that F0 is an impor-

tant feature for prosody conversion that is affected

by both short- and long-term dependencies, such

as the sequence of segments, syllables, and words

within an utterance. However, it may be difficult

to apply conventional deep learning-based VC to F0

conversion using simple representations of F0, such

as dynamic features (delta F0).

In recent years, it has been shown that the CWT

method can effectively model F0 in different tempo-

ral scales and significantly improve speech synthe-

sis performance. Our earlier work [1] systematically

captures the F0 features of different temporal scales

using AS-CWT, which transforms F0 features into

high-dimensional CWT-F0 features containing more

specifics. Thus, building on top of the success of

using CWT-F0 features for prosody conversion, in

this study, we want to go one step further to gener-

ate emotional voice more similar to target emotion

using a generative model.

Fig. 1 Illustration of the structure of VAE [2],

GAN [3] and the proposed VA-GAN.

In this study, inspired by the success of VAE and

GAN in VC tasks, we propose an emotional VC
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framework that combines a VAE with a GAN, which

named VA-GAN. The effectiveness of GAN is due to

the fact that an adversarial loss forces the generated

data to be indistinguishable from real data. This

is particularly powerful for generation tasks, how-

ever, a generative adversarial model only discrimi-

nates between ”real” and ”fake” features. There are

no constraints that the generated features have to

sound like a human voice. This leads to results in

which the generated voice is unnatural of bad qual-

ity. Another popular generative model, VAE, suffers

from the problem of fuzzy sound, which is caused by

the injected noise and imperfect element-wise mea-

sures, such as the squared error. Thus, by combin-

ing the VAE and GAN models, the VAE can provide

the efficient approximated posterior inference of the

latent factors for improving GAN learning. Mean-

while, GAN can enhance VAE with an adversarial

mechanism for leveraging generated samples.

As shown in Fig. 1, x and x’ are input and gener-

ated features, z is the latent vector and t are target

features. E, G, D are the encoder, generative, and

discriminative networks, respectively. h is the latent

representation processed by encoder network. y is

a binary output which represents real/synthesized

features. our VA-GAN consists of three parts: 1)

the encoder network E, which maps the x to a la-

tent representation h, 2) the generative network G,

which generates features x′ from the latent represen-

tation h, 3) and the discriminative network D, which

distinguishes real/fake (t/x’) features. Here, we use

the t and x’ to represent the target and converted

emotional voice. These three parts are seamlessly

cascaded together, and the whole pipeline is trained

end-to-end.

2 Features extraction and processing

It is well known that prosody is influenced both at

a supra-segmental level, by long-term dependencies,

and at a segmental-level, by short-term dependen-
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Fig. 2 CWT-F0 features extraction and processing.

cies. And, as has been proven in our recent stud-

ies [1], the CWT can effectively model F0 in different

temporal scales and significantly improve the system

performance. We adopt CWT to decompose the

one-dimensional F0 features into high-dimensional

CWT-F0 features. The continuous wavelet trans-

form of F0 is defined by

W (f0) (τ, t) = τ−1/2

∫ ∞

−∞

f0 (x)ψ

(

x− t

τ

)

dx (1)

ψ (t) =
2√
3
π−1/4

(

1− t2
)

e−t2/2, (2)

where f0 (x) is the input signal and ψ is the Mexi-

can hat mother wavelet. We decompose the contin-

uous F0 with 32 discrete scales, each one third of

an octave apart. Our F0 is thus represented by 32

separate components given by

Wi(f0)(t) =Wi(f0)(2
(i/3)+1τ0, t) (3)

where i = 1, ..., 32 and τ0=1 ms. Fig. 2 (a)

shows several CWT-F0 feature examples of decom-

posed components, which can represent the utter-

ance, phrase, word, syllable, and phone levels, re-

spectively.

GAN have been successful in image generation.

So, before training in the VA-GAN model, we re-

shaped CWT-F0 matrix to 128 × 128 size images

shown in Fig. 2 (b). As described in [1], the aver-

age duration of non-emphasized syllables was found

to be 50 ms to 180 ms, and the words from 300

ms to 650 ms. Thus, one sentence of CWT-F0 fea-

tures was reshaped into several 128×128 size images,

and one image approximately represents one word

(32× 512) composed of four syllables (32× 128× 4).

By doing this, the learning rate can be improved and

a higher overall VA-GAN accuracy can be achieved.

3 Emotional VC using VA-GAN

3.1 Background: VAE and GAN

3.1.1 Variational autoencoder

VAE defines a probabilistic generative process be-

tween observation x and latent variable h as follows:

z ∼ Enc(x) = qφ(h|x), x̃ ∼ Dec(h) = pθ(h|x) (4)

where (Enc) represents encode networks that en-

code a data sample x to a latent representation h

and decode networks (Dec) decode the latent repre-

sentation back to data space. In the VAE, the recog-

nition model qφ(h|x) approximates the true poste-

rior pθ(h|x). The VAE regularizes the encoder by

imposing a prior over the latent distribution pθ(h),

which is assumed to be a centered isotropic mul-

tivariate Gaussian pθ(h) ∼ N(h; 0, I). The VAE

loss Lθ,φ;x is minus the sum of the expected log-

likelihood Llike (the reconstruction error) and a

prior regularization term Lprior represented as:

Lθ,φ;x = −Eqφ(h|x)[log
pθ(x|h)pθ(x)
qφ(h|x)

] = Llike + Lprior

(5)

Llike = −Eqφ(h|x)[log pθ(x|h)] (6)

Lprior = KL(qφ(h|x)||pθ(h)) (7)

where KL is the Kullback-Leibler divergence. We

use the KL loss to reduce the gap between the prior

P (h) and the proposal distributions. The loss of

KL is only related to the encoder network Enc. It
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Fig. 3 Illustration of calculating the loss of VA-

GAN.

represents whether or not the distribution of the la-

tent vector is under expectation. Here, we want to

optimize Lθ,φ;x in respect to θ and φ.

3.1.2 Generative Adversarial Networks

GAN has obtained impressive results for image

generation. The key to the success of the GAN

is learning a generator distribution PG(x) that

matches the true data distribution. In a GAN, D

and G play the following two-player minimax game

with the value function V (G,D):

min
G

max
D

V (D,G) = Ex∼pdata(x)[logD(x)]

+ Ex∼pz(z)[log(1 −D(G(z)))]

(8)

This enables the discriminator, D, to find the bi-

nary classifier that provides the best possible dis-

crimination between true and generated data and

simultaneously enables the generator, G, to fit

PData(x). Both G and D can be trained using back-

propagation.

3.2 The VA-GAN training model

When dealing with the training of emotional VC,

each two sets of labeled and paired 128×128 feature

images were sampled from domains source emotional

voice X and target emotional voice Y , respectively.

As shown in Fig. 3, our model contains an encode

(Enc), conversion function (G : x → y) and a dis-

criminator (D). In practice, the D can distribute

the ”real” and ”fake” images easily, especially at

the early stage of the training process. This will

cause the problem of an unstable gradient of G when

training GAN. To resolve the instability of training

GAN, we extract the representative features from

a pre-trained Enc. We observe better results when

using the latent representation (h) from the encoder

Enc. For the conversion function G : x→ y and its

discriminator D with pre-trained Enc, we express

the objective as:

LG(G,D,X, Y ) = Ey∼Pdata(y)[logD(y)]

+Ex∼Pdata(x)[log(1 −D(G(Enc(x))))]

(9)

The goal of emotional VC is to learn a converted

emotional voice distribution PG(x) that matches

the target emotional voice distribution Pdata(y).

Equation (9) enables D to find the binary classi-

fier that provides the best possible discrimination

between a true and a converted voice and simulta-

neously enables the function G to fit the Pdata(y).

LG(G,D,X, Y ) is maximized and minimized with

respect to D and G, respectively.

G∗ = arg max
D

min
G

LG(G,D,X, Y ) (10)

The aim of a VAE is to learn a reduced repre-

sentation of the given data. Consequently, feature

spaces learned by the VAE are powerful represen-

tations for reconstructing the Pdata(y) distribution.

Meanwhile, replacing the reconstruction error term

from Equation (6) with a reconstruction error ex-

pressed in the discriminator D can solve the blurry

problem of VAE. To achieve this, let Dl(x) denote

the hidden representation of the lth layer of the dis-

criminator. We introduce a Gaussian observation

model for Dl(x) with mean Dl(x̃) and identity co-

variance:

p(Dl(x)|z) = N(Dl(x)|Dl(x̃), I) (11)

where x̃ ∼ Dec(h) in Equation (4) now is the sample

from the generator (G) of x. We can now replace

the VAE error of Equation (6) with

L
Dl

like = −Eq(z|x)[log p(Dl(x)|z)] (12)

The goal of our approach is to minimize the fol-

lowing loss function:

L = LGAN + LDl

like + Lprior (13)

4 Experiments

In our experiments, we used a database of emo-

tional Japanese speech. The waveforms used were

sampled at 16 kHz. Input and output data had the
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Table 1 F0-RMSE results for different emotions.

N2A, N2S and N2H represent the datasets from neu-

tral to angry, sad and happy voice, respectively.

Source LG NN VAE GAN VA-GAN

N2A 76.8 76.3 70.4 73.4 59.5 51.2

N2S 73.7 72.0 62.3 77.5 56.1 58.5

N2H 100.4 99.1 75.2 85.8 65.5 62.1

same speaker, but the speaker was expressing differ-

ent emotions. We classified the three data sets into

the following voice types: neutral to angry voices

(N2A), neutral to sad voices (N2S), and neutral to

happy voices (N2H). For each data set, 50 sentences

were chosen as training data and 10 sentences were

chosen for the VC evaluation.

To evaluate the effectiveness of prosody conver-

sion using our proposed VA-GAN method, we

compared the results with several state-of-the-art

methods. Logarithm Gaussian (LG) normalized

transformation is often used for F0 features conver-

sion in deep learning VC tasks. NNs is our previous

work [1] that used the pre-trained NNs to convert

the CWT-F0 features. We also compared VA-GAN

with the GAN and VAE. In these experiments, we

focused on the conversion of F0, therefore, in these

compared methods, the spectral features were con-

verted using the same DBN-based model.

4.1 Objective Experiment

To evaluate F0 conversion, we used the root-

mean-square error (RMSE). As shown in Table 1,

the conventional linear conversion LG can only af-

fect the conversion of neutral to happy, but only

slightly affects the other conversions. The other

three methods can affect the conversion of all emo-

tional voice datasets. In addition, the GAN and

VA-GAN can obtain significant improvement in F0

conversion.

4.2 Subjective Experiment

We conducted a subjective emotion evaluation us-

ing a mean opinion score test. The opinion score was

set to a five-point scale (the more similar to the emo-

tion of the sample voice the target speech sounded,

the higher the point value). Here, we tested the neu-

tral to emotional pairs (N2H, N2S, N2A). In each

test, 50 utterances (10 for source speech, 10 for tar-

get speech, and 30 for converted speech by the three

methods) were selected, and 10 listeners were in-

volved. Each subject listened to the source and tar-

get speech samples. The subject then listened to the

speech that was converted using the four methods

before beening asked to assign a point value to each

conversion. Fig. 4 shows the results of the MOS test.

The error bar shows the 95% confidence interval. As

the figure shows, the conventional LG method shows

poor performance in the conversion of neutral to an-

gry voice. Although using GAN without VAE ob-

tianed a slightly better result than the NN method

in the objective experiment, due to the instability

and non-regularization of some converted features,

it got worse scores in MOS test. The VA-GAN ob-

tained the best score in every emotional VC.

Fig. 4 MOS evaluation of emotional VC

5 Conclusions

In this paper, we propose an effective neutral-

to-emotional VC model, using the training model

VA-GAN, which consists of two effective generator

models (GAN and VAE). Meanwhile, for the feature

extraction and processing, we use CWT to system-

atically capture the F0 features of different tempo-

ral scales, and transform them to 2D-features, which

are suitable for the VA-GAN model.
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