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Abstract—When a sound hits an object, it causes the surface of
the object to vibrate. Some research has been carried out on the
recovering of sounds by extracting the vibrations seen on video
images. This research is expected to be applied in the field of
surveillance and security because sounds can be recorded from
relatively far away. The vibration of objects due to sound is so fast
and minute that it is invisible. However, it is possible to observe
such changes in objects by using the high-speed video as the
movement of each pixel by using a complex steerable pyramid.
In the conventional method, the movements of all pixels are added
together to recover the sound. So it is possible that some noise
source vibrations are mixed because there are some pixels that
move independently of the sound source being focused upon. In
this paper, we propose a sound recovery method focusing on
the vibration modes of the object associated with the frequency.
The vibrating parts of objects are different depending on the
material, shape and frequency. The vibration is composed of some
normal vibrations, and each has different loops and nodes. We
confirm which part of the object is vibrating for each frequency
of the sound, and recover the sound using a filter based on
the response of the object. Which part is vibrating is confirmed
from the amplitude response of each pixel when the signal of
that frequency is the largest. This response and the reliability of
the signal of each pixel are multiplied to each pixel as a filter. We
recovered sounds from several objects in videos and ascertained
the effectiveness of the method.

I. INTRODUCTION

When a sound hits an object, it causes the surface of the
object to vibrate. While the patterns of movement are different
depending on the characteristic of the objects, they include
enough information to understand the characteristics.

Abe Davis et al. proposed a method that classifies the
characteristics of vibrating objects in videos [1]. They also
showed that it is possible to estimate the movement of the
force-added object by exploring vibration patterns [2]. Justin
G. Chen et al. showed that it is possible to conduct non-
destructive inspection of buildings using video of buildings
shaken by the wind [3]. Some research has been carried out
on the recovering of sounds by extracting the vibration of
objects due to sound. This research is expected to be applied
in the field of surveillance and security because sounds can
be recorded from relatively far away. To extract the vibration
of objects from a distance, laser microphones were proposed.
The basic laser microphone records the phase of a reflected
laser. A laser Doppler vibrometer measures the Doppler shift
of the reflected laser to determine the velocity of the reflecting
surface [4]. Both types of laser microphones can recover high
quality sound from a long distance. However, it depends on the

precise positioning of a laser and receiver, as well as having
a surface with the appropriate reflectance. Zalevsky et al.
address these limitations by using an out-of-focus, high-speed
camera to record changes in the speckle pattern of reflected
laser light [5].

Abe et al. proposed a method that recovers sound from
a high-speed video [6]. This technique does not depend on
active illumination, and does not rely on additional sensors
or detection modules other than a high-speed video camera.
They also show how sound may be recovered from regular
consumer cameras with standard frame-rates. In their method,
the movements of each pixel in a video frame are added
together. As a result, some noise in the video that is not related
to the sound source that is being recorded may be added to the
mix. In our previous work [7], we recovered the sound from
an object ’s subtle motion in the presence of large motions
using momentary phase variations.

In this paper, we propose a method that recovers sound
by considering the vibration modes of the object that are
associated with the frequency. The object’s vibration is com-
posed of some normal vibrations (vibration modes), and each
vibration mode has loops and nodes. The vibrating parts of
objects differ depending on the material, shape and frequency
of the vibrating parts. We confirm which part of the object
is vibrating for each frequency of the sound, and recover the
sound using a filter based on the response of the object. Which
part is vibrating is confirmed from the amplitude response of
each pixel when the signal of that frequency is the largest.
This response and reliability of the signal of each pixel are
multiplied to each pixel as a filter. We recovered sounds from
several objects in videos and evaluated the effectiveness of our
method.

II. SOUND RECOVERY

A. Displacement extraction

For simplicity, we consider the case of a 1D image intensity
profile f(x). Using Fourier series decomposition, f(x) is
represented as a sum of complex sinusoids

f(x) =

∞∑
ω=−∞

Aωe
iωx. (1)

This means that the displacement of the image affects the
phase only. Therefore, the image profile displaced by the
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function δ(t) is represented by

f(x+ δ(t)) =
∞∑

ω=−∞
Aωe

iω(x+δ(t)). (2)

Thus, we can obtain the displacements of images using the
difference in phases.

B. Complex steerable pyramid

In this paper, we use a complex steerable pyramid [8], which
is a technique that extracts a small change in the image.

Neal Wadhwa et al. extract local small changes from phase
variations in the complex steerable pyramid, and uses them to
magnify the local subtle motions [9]. They also enable real-
time processing by using a Riesz Pyramid, which performs
as well as a complex steerable pyramid [10]. Mohamed A.
Elgharib et al. combine the tracking of a region of interest
using optical flow or iterative stabilization with phase-based
video magnification, to magnify subtle motions in the presence
of large motions [11]. A complex steerable pyramid is a
filter bank that decomposes an image into complex-valued
spatial sub-bands corresponding to a different scale r and an
orientation θ. Fig. 1 shows the procedure of image decom-
position using the filter bank. This process is performed in
the frequency domain on the input image. First, the input
image is run through a high-pass filter, and then the rest is
run through a low-pass filter. The middle band is run through
an oriented filter. The sub-bands are inversely transformed and
output as complex images. The removed low-frequency bands
are subsampled, and this process is recursively repeated. Fig. 2
shows an example of the image applied this filter bank.

The complex image Ir,θ, which represents the sub-band
of scale r = 1, . . . , n and orientation θ = 1, . . . ,m, is
decomposed into amplitude Ar,θ(x) and phase ϕr,θ(x) by
using Euler’s formula as

Ar,θ (x) =
√

Re (Ir,θ (x))
2
+ Im (Ir,θ (x))

2
, (3)

ϕr,θ (x) = arctan
Im (Ir,θ (x))
Re (Ir,θ (x))

. (4)

x represents the position in the image.

C. Conventional sound recovery method

The phase difference ϕv
r,θ(x, t) between a frame t and a

reference frame t0 is calculated for all t to obtain the phase
variation as

ϕv
r,θ(x, t) = ϕr,θ(x, t)− ϕr,θ(x, t0). (5)

Fig. 3 shows an example of phase variation extraction. In
Fig. 3, the one-pixel displacement of the disc image is ex-
tracted. The phase difference image represents the displace-
ments of each pixel. In textureless regions, noise factors for
phase tend to increase. Therefore, the single motion signal
Φr,θ(t) of the sub-band at frame t is calculated as the spatial
average of phase variations weighed by its squared amplitude
as

Φr,θ(t) =
∑

x

Ar,θ(x, t)
2
ϕv
r,θ(x, t), (6)
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because the amplitude gives the strength of texture.
Finally, single motion signals are aligned temporally to

relate to each other, and they are combined into the recovered
signal ŝ(t) to strengthen each signal as

ti = argmax
ti

Φ(r0, θ0, t)
TΦ(ri, θi, t− ti), (7)

ŝ(t) =
∑
i

Φ(ri, θi, t− ti). (8)

Moreover, the recovered signal is further processed for
the denoising. To remove high-energy noise in the lower
frequencies, a high-pass Butterworth filter is applied to the
recovered signal. To improve the signal even more, a denoising
method [12], [13] is applied to it.
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III. PROPOSED METHOD

A. Vibration modes

An object has parts that are easy or hard to vibrate. The
parts depend on the frequency because the vibration modes
that compose the object’s vibration have different loops and
nodes.

Fig. 4 shows an example in which a cup covered with nylon
is hit by sounds of several frequencies. The images represent
phase differences, where the white pixel means that the phase
difference is π and represents upward displacement. The black
pixel means −π and represents downward displacement. We
can see that different parts vibrate differently depending on
the frequency.

Fig. 5. Procedure for obtaining the vibration modes

B. Filtering based on vibration modes

We extract the displacement of each pixel in the input
frame t by using a complex steerable pyramid as well as the
conventional method. Then, we define that the movement of
the object sr,θ(x, t) is the phase difference ϕv

r,θ(x, t) of frame
t and position x.

First, we determine the frame nmax
r,θ (ω) where the signal of

each frequency is the largest. We perform Short Time Fourier
Transform (STFT) on the movements of each pixel in frame
n, and obtain the spectrum of phase variation Fr,θ(x, ω, n) as

Fr,θ(x, ω, n) = STFT [sr,θ(x, t)]. (9)

STFT [·] represents Short Time Fourier Transform opera-
tion. The spectrum of phase variation and the minimum of
amplitude Amin

r,θ (x) from a complex steerable pyramid are
normalized respectively, and then multiplied. The result is
considered as the power of each frequency in the spatial sub-
band. The frame nmax

r,θ (ω) gives the maximum of the power
as

nmax
r,θ (ω) = argmax

n

∑
x

Amin
r,θ (x)Fr,θ(x, ω, n). (10)

Then we obtain Mr,θ(x, ω) which is the largest response for
each frequency in each sub-band as

Mr,θ(x, ω) = |Fr,θ(x, ω, nmax
r,θ (ω))|. (11)

The procedure is shown in Fig. 5.
We consider the response as a filter for the vibration

modes and the amplitude minimum as a filter associated with
the reliability of the phases at each pixel. These filters are
normalized in the sub-bands and applied to the movement in
the frequency domain. The output is inversely transformed,
and the real parts of all pixels are added up in each sub-band.
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Object 1 Object 2 Object 3

Fig. 6. Sample frames of videos

Fig. 7. Spectrogram of input signal (chirp)

Fig. 8. Spectrogram of the utterance of /o m o sh i r o i/

IV. EXPERIMENTS

A. Experimental setup

Plastic bags of different sizes (shown in Fig. 6) are filmed
in the same environment. The objects are illuminated with
additional photography lamps and filmed from about 10 cm
away using a high-speed camera. Sound is played by the
loudspeaker at volumes over 100 dB. The loudspeaker is
placed over 30 cm away from the object, and its direction
is at a right angle to the direction of the camera. The chirp
signal shown in Fig. 7 is used as the sound source. The video
frame rate is 2,200 Hz, with a resolution of 256×256 pixels.
Denoising methods are a high-pass Butterworth filter with a
cut-off of 80 Hz.

We also recover the speech shown in Fig. 8 from object 1.
The video frame rate is 16,000 Hz. The recovered sound is
denoised with [13] as well as with the Butterworth filter.

TABLE I
SSNR OF RECOVERD SOUND FOR THE CHIRP SIGNAL

SSNR [dB] Object 1 Object 2 Object 3
Conventional method 0.6114 1.0259 0.8882

Proposed method 2.3520 2.1770 1.2008

TABLE II
EVALUATION OF RECOVERD SOUND FOR THE UTTERANCE OF /O M O SH I

R O I/

SSNR [dB] STOI
Conventional method -0.5806 0.5989

Proposed method -0.4093 0.6227

We recover sounds from each sub-band, and the best of
them is used as the final output.

B. Experimental result

Figs. 9-11 show the spectrograms of recovered sounds.
Table I shows the Segmental SNR (SSNR) [14] of the sounds
recovered by our method and the conventional method. SSNR
is obtained by dividing the signal into M frames of length N
and averaging the value of the SNR for each frame as

SSNR =
10

M

M−1∑
m=0

log

∑Nm+N−1
n=Nm (y (n))

2∑Nm+N−1
n=Nm (s (n)− y (n))

2
. (12)

y(t) is the original signal and s(t) is the processed signal.
Fig. 12 shows the spectrogram of the recoverd speech.

Table II shows SSNR and Short Time Objective Intelligibility
(STOI) [15].

In our results, there is less noise in the sound recovered
by our method, and SSNR is improved from the conventional
method. Sound quality is also improved in the case of speech.
On the other hand, it seems that some parts of the sounds
are not recovered well possibly because the vibration modes
are not determined well. It may be possible to recover a
better sound by improving the method of detecting an object’s
vibration modes.

As with the conventional method, our method also restores
overtones that really do not exist. The overtones appear espe-
cially when using a sinusoidal sound source. It is considered
that the overtone strength depends on the simplicity of the
vibration and the object’s characteristics. This needs further
investigation.

V. CONCLUSIONS

We proposed the sound recovery method considering an
object’s vibration modes associated with the frequency. It has
been shown that our method performs better sound recovery
than the conventional method. In future research, we will
continue to investigate how to improve the detection of an
objects’ vibration modes.
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Fig. 9. Spectrogram of sound recovered from object 1

Fig. 10. Spectrogram of sound recovered from object 2

Fig. 11. Spectrogram of sound recovered from object 3
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