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Abstract— This paper describes a novel lip-to-speech 

conversion method that converts voiceless lip movements into 

voiced utterances without recognizing text information. 

Inspired by a Gaussian Mixture Model (GMM)-based voice 

conversion method, a GMM is estimated from jointed 

lip-movements and audio features, and for test, an input 

lip-movements feature is converted to the audio feature using 

maximum likelihood (ML) estimation. The proposed method 

has been evaluated using large-vocabulary continuous 

utterances and experimental results show that our proposed 

method effectively estimates spectral envelopes and 

fundamental frequencies of audio speech from voiceless lip 

movements. 

I. INTRODUCTION 

Lip-to-Speech Conversion (LTSC) is a technique that 
converts “unvoiced” lip movements to “voiced” utterances 
[1][2], and it is a difficult challenge because visual images 
contain less linguistic information than audio speech. 
However, we assume LTSC will be an assistive technology for 
those who have a speech impediment or communication tools 
in noisy environments.  

In this paper, a novel LTSC method based on ML 
estimation is described. In the training process, visual (lip) 
features and audio features are jointed, and they are 
approximated by a GMM. Then, an input visual feature is 
converted to the audio feature (spectral envelope and 
fundamental frequency) by using the ML estimation, where a 
long-term image feature is constructed from multiple frames 
of images. 

II. LIP-TO-SPEECH CONVERSION 

In order to capture the lip movements, a segmental image 
feature is constructed by concatenating the ±𝐿 consecutive 
frames of the image feature. Then, Principal Component 
Analysis (PCA) is applied to the segmental feature in order to 
obtain the long-term image feature. 

For the audio features in the training process, spectral 
envelope, F0 (fundamental frequency), and aperiodic 
components are extracted by using a vocoder named 
STRAIGHT [3]. In this paper, the spectral envelope and F0 
are independently estimated from visual features, and 
aperiodic components are not considered. For F0 estimation, 
log-scaled F0 and delta features are used. 

A joint probability of a joint vector 𝑍 of image features 𝑋 
and audio features 𝑌  is modeled using the mixture of 
multivariate Gaussian distribution 𝑁(. ; 𝜇, 𝛴) with parameters 
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of a mean vector and a variance matrix in the training process. 
In the conversion process, the probability of 𝑌 given an input 
𝑋 is considered, and a time sequence of the converted feature 
vector is determined using maximum likelihood estimation 
[2]:  

                             �̂� = 𝑎𝑟𝑔𝑚𝑎𝑥 𝑃(𝑌|𝑋, 𝛩(𝑍))


III. RESULTS AND DISCUSSION 

    The number of training sentences was 300, and fifty 

sentences were used for testing. The size of the image was 

720 × 480 pixels, and a 40 × 20-pixels mouth area was 

extracted. Fig. 1 shows the effectiveness of the long-term 

image feature for acoustic spectrum estimation, where 

mel-cepstrum distortion [dB] was used as a measure of the 

objective evaluations. As shown in the figure (for the number 

of image feature dimensions after PCA: 50, 100, and 150), the 

long-term image feature using L = 10 or 20 is the most 

effective for acoustic spectrum estimation.  

Figure 1.  Mel-cep distortion (for the acoustic spectral feature) as a function 

of the number of dimensions for the long-term image feature.  

Our future work includes the evaluation of the other 

advanced image features and the subjective evaluations.  
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