
Emotional Voice Conversion with Adaptive Scales F0 based on Wavelet
Transform using Limited Amount of Emotional Data

Zhaojie Luo, Jinhui Chen, Tetsuya Takiguchi, Yasuo Ariki

Graduate School of System Informatics, Kobe University, Japan
{luozhaojie, ianchen}@me.cs.scitec.kobe-u.ac.jp, {takigu, ariki}@kobe-u.ac.jp

Abstract
Deep learning techniques have been successfully applied to
speech processing. Typically, neural networks (NNs) are very
effective in processing nonlinear features, such as mel cepstral
coefficients (MCC), which represent the spectrum features in
voice conversion (VC) tasks. Despite these successes, the ap-
proach is restricted to problems with moderate dimension and
sufficient data. Thus, in emotional VC tasks, it is hard to deal
with a simple representation of fundamental frequency (F0),
which is the most important feature in emotional voice repre-
sentation, Another problem is that there are insufficient emo-
tional data for training. To deal with these two problems, in
this paper, we propose the adaptive scales continuous wavelet
transform (AS-CWT) method to systematically capture the F0
features of different temporal scales, which can represent dif-
ferent prosodic levels ranging from micro-prosody to sentence
levels. Meanwhile, we also use the pre-trained conversion func-
tions obtained from other emotional datasets to synthesize new
emotional data as additional training samples for target emo-
tional voice conversion. Experimental results indicate that our
proposed method achieves the best performance in both objec-
tive and subjective evaluations.
Index Terms: voice conversion, F0 features, emotion, continu-
ous wavelet transform, deep learning

1. Introduction
Voice conversion (VC) has been widely used in many speech
processing tasks, such as speaking assistance [1], speech en-
hancement [2] and other applications [3], [4]. Therefore, the
need for this type of technology in various fields has contin-
ued to propel related studies each year. Recently, deep learn-
ing has dramatically improved the performance of VC systems
through learning hierarchies of features optimized for the task at
hand. However, deep learning models are restricted to problems
with moderate dimensions and sufficient data, so most deep
learning-based VC works focus on the conversion of spectral
features, which mainly affect the voice acoustics of a voice,
rather than on the conversion of F0 features, which mainly
affect the prosody of a voice, because F0 features extracted
from STRAIGHT [5] are low-dimensional features that can-
not be processed well by deep learning models. One example
of deeper VC methods is proposed by Desai et al. [6] based
on Neural Networks (NNs). Nakashika et al. [7] also pro-
posed a VC method using speaker-dependent restricted Boltz-
mann machines (RBMs) or deep belief networks (DBNs [8]) to
achieve non-linear deep transformation. F0 features are usually
converted by logarithm Gaussian (LG) normalized transforma-
tion [9] in these models.

As mentioned above, in VC tasks, the spectral and F0 fea-
tures can affect the voices acoustic and prosodic features, re-
spectively. The prosody plays an important role in conveying

various types of non-linguistic information, such as the iden-
tity, intention, attitude, and mood, which represent the emo-
tions of the speaker. However, previous studies have shown that
prosody conversion is affected by both short- and long-term de-
pendencies, such as the sequence of segments, syllables, and
words within an utterance, as well as lexical and syntactic sys-
tems of a language [10]. The LG-based method is insufficient
to convert prosody effectively owing to constraints of their lin-
ear models and low-dimensional F0 features. Recently, it has
been shown that CWT can effectively model F0 in different
temporal scales and significantly improve the speech synthe-
sis performance [11]. For this reason, Suni et.al. [12] applied
CWT for intonation modeling in hidden Markov model (HMM)
speech synthesis. Ming et.al. used CWT in F0 modeling within
the NMF model [13] or DBLSTM model [14] for emotional
VC, and our earlier work [15] also decomposed the F0 into 30
temporal scales containing more specifics of different temporal
scales by CWT, and trained them with NN models while using
DBNs to train the spectral features.

In this paper, inspired by the deep learning models’ ability
to perform well in complex nonlinear feature conversion [7]
and CWT’s ability to improve F0 features conversion [13], we
propose a novel method that uses adaptive scales CWT (AS-
CWT) to decompose F0 to several scales and train them by
NNs. Different from the research [14] or [15], which decom-
posed the F0 by 10 discrete scales, each one octave apart, or
more scales up to 30, each one third octave apart, this approach
systematically captures the F0 features of different temporal
scales by adaptive scales, which can then represent different
prosodic levels ranging from micro-prosody to the sentence lev-
els, but better optimized. Moreover, to overcome the difficulty
of a limited amount of training data, we also propose the use
of an adaptive method, which enables us to synthesize new data
along the conversion function pre-trained by other emotional
data-sets. For instance, when performing the emotion conver-
sion from an angry voice to a neutral voice, we can process
an additional angry voice in advance by converting other data,
such as happy and sad voices, to an angry voice. Given that the
DBNs can effectively perform spectral envelope conversion, we
use MCC features to train the spectral conversion function with
DBNs proposed by Nakashika et.al. [7]. We chose different
models to separately convert the spectral features and F0 fea-
ture. This is because, although the wavelet transform decom-
posed F0 features to more complex features, they can be trained
adequately by NNs, whereas the more complex spectral features
require a deeper architecture.

In the remaining part of this paper, we describe our AS-
CWT method in Section 2. The training models used in our pro-
posed method are introduced in Section 3. Section 4 gives the
detailed stages process of experimental evaluations, and Sec-
tion 5 presents our conclusions.
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Figure 1: Illustration of calculating the adaptive scales CWT and using them to decompose the F0 features. The left part of the figure
shows the three main steps of calculating the adaptive scales, and the right part shows the samples of CWT-F0 features decomposed by
adaptive scales CWT.

2. Adaptive Scales CWT
In our earlier work [15], we adopted CWT to decompose the
F0 contour into 30 temporal scales before training the F0 fea-
tures using NNs. The decomposed 30-dimensional features are
linearly spaced scales, each separated by one-third of an oc-
tave. However, only the features that can represent the utter-
ance, phrase, word, syllable, and phone levels are useful for
training. Thus, in the current paper, we apply an adaptive scales
method to decompose F0 features by wavelet transform before
training them. As shown in the left part of Figure 1, there are
three main steps in calculating the adaptive scales. 1) Calcu-
late the optimized duration for each temporal level using the
extra data. 2) We investigate the variability in each temporal
level as a rich source of information for studying the degree of
impact of every level in emotion conversion as a function of
influencing strength, and 3) calculate adaptive scales with
the influencing strength and optimized duration of each
temporal level obtained in 1) and 2). The steps for processing
details are described below.

1) In order to find the optimized duration of sentence,
phrase, and word levels, we first perform segmentation in the
extra neutral voice data. As shown in Figure 2, means and
standard deviations of the duration of the sentence, phrase, and
word can be calculated from the pre-segmented data. We de-
note by U [x∗] and Γ[x∗] the mean and standard deviation of
duration of each temporal level x∗, x∗ ∈ X , and X is the set
{Xs, Xp, Xw, Xsyl, Xpho}, which represents the duration of
five temporal levels. According to [16], the average duration of
non-emphasized syllables was found to be 50ms to 180ms, and
that of phone levels was 20ms to 40ms. Therefore, we set the
mean of the syllable level U [Xsyl] to 115ms, the middle values

Arayuru wo genjitsu subete jibun  no houhe nejimage ta    noda 
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Figure 2: Example of performing segmentation in the training
data. Here, Xs, Xp and Xw represent the durations of sen-
tence, phrase and word, respectively.

between 50ms and 180ms, and phone level U [Xpho] to 30ms.
The standard deviation Γ[Xsyl] is set to 65ms and Γ[Xpho] is
10ms.

2) Next, we calculate each temporal level’s which can rep-
resent the proportion of the influence among all the temporal
levels in the emotional VC. We first calculate the relative dis-
tance between the emotional voice and neutral voice in each
temporal level as shown below:

R(U [x∗]) =

√∑n
i=1(W

i
E(U [x

∗])−W i
N (U [x

∗]))2

n ∗ U [x∗] (1)

where the mean U [x∗] of each level is obtained in the first step,
and n is the number of training data in each emotional voice
data set. W i

E(U [x
∗]) andW i

N (U [x
∗]) represent the continuous
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wavelet transform function of F0 using the emotional and neu-
tral input signal, in different temporal level x∗. The transform
functions are defined by

W i
E (U [x

∗]) = τ−1/2

∫ ∞

−∞
FE0 (xi)ψ

(
x− U [x∗]

τ

)
dx

W i
N (U [x∗]) = τ−1/2

∫ ∞

−∞
FN0 (xi)ψ

(
x− U [x∗]

τ

)
dx

(2)

ψ (t) =
2√
3
π−1/4 (1− t2) e−t2/2, (3)

where τ = 1ms, ψ is the Mexican hat wavelet, FE0 (xi) and
FN0 (xi) represent the emotional and neutral input signal, re-
spectively. Then, the influencing strength of each temporal
level can be ranked by

PU [x∗] =
R(U [x∗])∑

x∗∈X R(U [x∗])
(4)

Then, we can draw the optimized number of scales for CWT
in each temporal level with the influencing strength from a
multinomial distribution:

λX ∼Multinomial(N,PU)

λx∗ ∈ λX = (λXs , λXp , λXw , λXsyl , λXpho)

PU [x∗] ∈ PU = (PU [Xs], PU [Xp], PU [Xw ], PU [Xsyl], PU [Xpho])

(5)

where N is the total number of scales, which can be set in dif-
ferent values, vectors PU are made up of all the influencing
strengths, and λX represents the number of scales in all the
temporal levels. Therefore, the λx∗ can represent the number
of scales in each temporal level.

3) The third step is using the influencing strength and
optimized duration to calculate the adaptive scales of each tem-
poral level. First, we use the Gaussian function to separately
calculate the probability densities of the duration in each tem-
poral level using

O[x∗] = N(O[x∗], U [x∗],Γ[x∗]) (6)

where O[x∗] represents the probability density of duration in
each temporal level. Then, we set a threshold to draw the valid
values x∗, when probability density O[x∗] is over 50%. The
optimized duration can then be represented by

D(Ix∗) = min(x∗) +
max(x∗)−min(x∗)

λx∗
∗ Ix∗

Ix∗ = (0, ..., λx∗)

(7)

where λx∗ represents the optimum number of scales for CWT
in each temporal level calculated in Eq. 5, and x∗ is the valid
value of duration in each temporal level. Finally, the adaptive
scales can then be represented by

θIx∗ = log2(D(Ix∗)/τ0) (8)

where τ0 = 1ms. After calculating the scales that can model
prosody at different temporal levels, we adopt CWT to decom-
pose the F0 contour with these adaptive scales and our F0 is
represented by separate components given by

WθIx∗ (f0)(t) =WθIx∗ (f0)(2
θIx∗ +1τ0, t)

(
θIx∗ + 2.5

)−5/2

(9)

The original signal is approximately recovered by

f0 =

λx∗∑
Ix∗=0

∑
x∗∈X

WθIx∗ f0(t)(θIx∗ + 2.5)−5/2 + ε(t) (10)

where ε(t) is the reconstruction error.

3. Training Model
The conversion function training of our proposed method has
two stages. The first stage is the MCC conversion using the
DBNs, the other is the conversion of F0 features using the
NNs. In the first stage, we apply the training model used in
our earlier work [15] that first transformed aligned spectral fea-
tures of source and target voices to 24-dimensional MCC fea-
tures. Then, train these MCC features by the 7-layers DBNs.
In the second stage, we used the high-dimension F0 features
for prosody features training. To achieve this, we transfer the
parallel data consisting of the aligned F0 features of the source
and target voices to CWT-F0 features by using the AS-CWT
method. Then we used the 4-layer NN models to train the
CWT-F0 features. Neural networks are trained on a frame error
(FE) minimization criterion and the corresponding weights are
adjusted to minimize the error squares over the whole source-
target, stereo training data set. The learning problem is to find
an optimized mapping function GE→N that satisfies

argmin
GE→N

‖GE→N (XE)− YN‖2 (11)

where, XE represents the input CWT F0 features, and YN is
the target CWT F0 features. However, to train such a regres-
sion model, a large corpus with different emotions is required.
For this paper’s scope with only a limited amount of emotional
voice data, NNs may suffer from an insufficient amount of train-
ing data, leading to poor performance. To address the problem,
we propose a NNs model using the other emotional data sets
to synthesize new emotional data as additional training samples
for target emotional voice conversion. An example of convert-
ing angry voice to neutral voice can be formulated as follows:

argmin
GN→A

‖GN→A(XN )− YA‖2

argmin
GS→A

‖GS→A(XS)− YA‖2

argmin
GH→A

‖GH→A(XH)− YA‖2

XR = [GN→A(XN ), GS→A(XS), GH→A(XH)]
T

(12)

where YA represents the anger voice data set, and XN , XS and
XH represent the input neutral, sad, and happy voice data sets,
respectively. Thus, GN→A, GS→A and GH→A represent the
networks that are trained for converting the other voice datasets
to an angry voice data set. XR represents the synthesized new
angry voice data. Then, we concatenated XA with the synthe-
sized angry voice data XR in Eq. 12 to calculate the conversion
function with the goal of converting the angry voice to a neutral
voice as shown below:

argmin
GA→N

‖GA→N

(
XR

XA

)
− YN‖2 (13)

Other emotional voice conversion can also be conducted by the
proposed method using pre-trained conversion functions to syn-
thesize new data as additional training samples for target voice
conversion. Since there are sufficient neutral voice data, there is
no need to synthesize the neutral voice in the proposed method.
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4. Experiments
We used a database of emotional Japanese speech constructed
in a previous study [17]. The waveforms used were sampled at
16 kHz. Input and output data had the same speaker but express-
ing different emotions. We classified the six data sets into the
following: happy to neutral voices, angry to neutral voices, and
sad to neutral voices, as well as their inverse conversion from
neutral voices to each emotion voices. For each data set, 50
sentences were chosen as training data and 10 sentences were
chosen for the VC evaluation.

To evaluate the proposed method, we compared the results
with several state-of-the-art methods listed below.

• DBNs+LG: This system proposed by Nakashika et al.
converts spectral features using DBNs, and converts the
F0 features through the LG method [7].

• NMF: Using non-negative matrix factorization (NMF)
to convert five-scale CWT-F0 features.

• DBNs+CWT: Our previous work [15] that uses DBNs to
convert spectral features while using the NNs to convert
the 30-scale CWT-F0 features.

• AS-CWT: This is the proposed system that uses DBNs
to convert spectral features while using NNs to convert
the CWT-F0 features decomposed by AS-CWT method.

4.1. Objective Experiment

To evaluate the F0 conversion, we used the root-mean-square
error (RMSE),

RMSE =

√√√√ 1

N

N∑
i=1

((F0ti)− (F0ci ))
2 (14)

where F0ti and F0ci denote the target and the converted F0 fea-
tures, respectively. A lower F0-RMSE value indicates smaller
predicting error. Unlike the RMSE evaluation function used
in [13], which evaluated the F0 conversion by calculating log-
arithmic scaled F0, we used the original target F0 and con-
verted the F0 to calculate the RMSE values. Given that our
RMSE function evaluates complete sentences that contain both
voiced and unvoiced F0 features instead of the voiced logarith-
mic scaled F0, the RMSE values are expected to be high. For
emotional voices, the unvoiced features also include some emo-
tional information. Therefore, we choose the F0 of complete
sentences for evaluation instead of the voiced logarithmic scaled
F0.

The average F0-RMSE results from emotional to neutral
pairs and their inverse conversion are reported in Table 1. As
shown in Table 1, the conventional linear conversion LG can
affect the conversion of happy to neutral, but only slightly affect
the conversion of angry voices and sad voices to neutral voices.
The NMF method, previously proposed CWT method, and the
new proposed AS-CWT method can affect the conversion of all
emotional voice datasets. In addition, the proposed method can
obtain significant improvement in F0 conversion as a whole.

4.2. Subjective Experiment

We conducted subjective evaluations using a 5-scale MOS test.
The opinion score was set to a five-point scale (the more similar
to the emotion of the sample voice the target speech sounded,
the larger the point given). Here, we tested the emotional to neu-
tral pairs (H2N, S2N, A2N) and their inverse conversion (N2H,

Table 1: F0-RMSE results for different emotions. A2N, S2N
and H2N represent the datasets angry , sad and happy voice to
neutral voice, respectively. N2A, N2S and N2H represent their
inverse conversion

E2N N2E
A2N S2N H2N N2A N2S N2H

Source 76.8 73.7 100.4 76.8 73.7 100.4
DBNs+LG 76.1 73.5 85.2 76.3 72.0 99.3

NMF 69.4 66.9 74.3 70.4 62.3 75.2
DBNs+CWT 61.6 62.2 75.9 39.5 40.1 64.5

AS-CWT 51.2 64.1 64.4 37.8 35.9 62.1

N2S, N2A). In each test, 50 utterances (10 for source speech,
10 for target speech, and 30 for converted speech by the three
methods) were selected, and 10 listeners were involved. Each
subject listened to the source and target speeches. Then, the
subject listened to the speech converted using the three methods
and asked to give each conversion a point. Figure 3 shows the
result of MOS test, the error bar shows the 95% confidence in-
terval. As the figure shown, the conventional LG method shows
poor performance in the conversion of anger voice to neutral
voice. The AS-CWT (proposed method) obtained a better score
than the LG method and NMF in every emotional VC. The dif-
ference between AS-CWT and CWT is not statistically signif-
icant when dealing with the conversion from emotional voice
to netural voice, but obtained a better score when coverting the
neutral voice to emotional voice.

Figure 3: MOS evaluation of emotional voice conversion

5. Conclusions
In this paper, we propose the adaptive scales continuous wavelet
transform (AS-CWT) method to systematically capture the F0
features of different temporal scales. Meanwhile, we also
use the pre-trained conversion functions to synthesize new
emotional data as additional training samples for target emo-
tional voice conversion. A comparison between the proposed
method and the conventional methods (logarithm Gaussian,
NMF) shows that our proposed model can effectively change
the prosody of the emotional voice.
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