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Abstract
Recently, we proposed an audio-visual speech recognition

system based on a neural network for a person with an articula-
tion disorder resulting from severe hearing loss. In the case of a
person with this type of articulation disorder, the speech style is
quite different from that of people without hearing loss, making
a speaker-independent acoustic model for unimpaired persons
more or less useless for recognizing it. Our proposed system
has shown high performance; however, some problems remain.
Although the feature extraction networks are trained using the
phone labels as the target class, it is difficult to obtain the cor-
rect alignment for their speech. Also, it is necessary to consider
a gap between audio and visual feature spaces to treat the dif-
ferent modalities. In this paper, we propose a feature extraction
method using deep canonical correlation analysis to tackle these
weaknesses. The effectiveness of this approach was confirmed
through word-recognition experiments in noisy environments,
where our feature extraction method outperformed the conven-
tional methods.
Index Terms: Speech recognition, multimodal, deep canonical
correlation analysis, assistive technology

1. Introduction
In recent years, a number of assistive technologies using in-
formation processing have been proposed; for example, sign
language recognition using image recognition technology [1]
and text reading systems from natural scene images [2]. In this
study, we focused on communication-assistive technology for a
physically unimpaired person to enable him or her to communi-
cate with a person with an articulation disorder resulting from
severe hearing loss.

Some people with hearing loss who have received speech
training, or who lost their hearing after learning to speak, can
communicate using spoken language. However, in the case of
automatic speech recognition (ASR), their speech style is so dif-
ferent from that of people without hearing loss that a speaker-
independent (audio-visual) ASR model for unimpaired persons
is of little use for recognizing such speech as described in Sec-
tion 5.1. Matsumasa et al. [3] researched an ASR system for ar-
ticulation disorders resulting from cerebral palsy, and reported
the same problem. Najninet al. [4] investigated the relationship
between a hearing-impaired individual’s speech and his hearing
loss.

The performance of speech recognition systems generally
degrades in a noisy environment. For people with hearing loss,
because they do not hear ambient sound, they cannot control
the volumes of their voices and their speaking style in a noisy
environment, and it is difficult, those who are physically unim-
paired, to recognize utterances using only the speech signal. In

such cases, we try to read the lips of the speaker to compen-
sate for the reduction in recognition accuracy. For people with
hearing problems, lip reading is one communication skill that
can help them communicate better. In the field of speech pro-
cessing, audio-visual speech recognition has been studied for
robust speech recognition under noisy environments [5, 6, 7].
In this paper, we investigate an audio-visual speech recognition
approach for articulation disorders resulting from severe hear-
ing loss.

Recently, we proposed bottleneck feature extraction [8]
from audio and visual features for a hearing-impaired person us-
ing convolutive bottleneck networks (CBN), which stack multi-
ple layers of various types (such as a convolution layer, a pool-
ing layer, and a bottleneck layer) [9] forming a deep network.
Thanks to the convolution and pooling operations, we can train
the convolutional neural network (CNN) robustly to deal with
the small local fluctuations of an input feature map. In some
tandem approaches using deep learning, an output layer plays
a classification role, and output units are used as a feature vec-
tor for a recognition system, where phone labels are used as a
teaching signal for an output layer. However, in the case of an
articulation disorder, the phone label estimated by forced align-
ment may not be correct. An approach based on CBN [10] uses
a bottleneck layer as a feature vector for a recognition system,
where the number of units is extremely small compared to the
adjacent layers, following the CNN layers. Therefore, the bot-
tleneck layer is a better feature than an output layer, which is
strongly influenced by some wrong phone labels because it is
expected that the bottleneck layer can aggregate the propagated
information and extract fundamental features included in an in-
put map. In this paper, we investigate another approach to tackle
this alignment problem—unsupervised learning.

In multi-view learning, deep canonical correlation analy-
sis (DCCA) [11], which is nonlinearly-extended canonical cor-
relation analysis (CCA), has been proposed. DCCA has two
deep neural networks and simultaneously learns nonlinear map-
pings (both networks) of two modalities that are maximally cor-
related. CCA is a statistical method for dealing with the corre-
lation between sets of two variables, finding linear projection
vectors. Unlike CCA, DCCA is a parametric method, and it
can learn the complex transformations of two views. DCCA
has been applied to several audio classification tasks [12, 13],
and improved [14]. The DCCA objective function is optimized
in an unsupervised manner over the actual data; therefore, it is
not necessary to use some wrong phone labels for training net-
works.

In most multimodal speech recognition systems, audio and
visual features are integrated by just concatenating these fea-
tures. Because the audio and visual features are intrinsically
different, and a gap between audio and visual feature spaces
may cause undesirable effects in speech recognition. Applying
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DCCA, gaps between two feature spaces are reduced, and we
expect to obtain more complementary features for speech recog-
nition. We will show in this paper that our proposed feature can
achieve better recognition performance in noisy environments.

The rest of this paper is organized as follows: In Section 2,
we review CCA and DCCA. In Section 3, our proposed method
is explained. In Section 4, the experimental data are evaluated,
and the final section is devoted to our conclusions.

2. Preliminaries
In this section, we review CCA and DCCA, where two views
represent the audio and visual features.

2.1. Canonical Correlation Analysis

Let Xaudio 2 Rd1�N , Xvisual 2 Rd2�N denote audio and vi-
sual features with N samples where the sample mean of these
matrices is normalized to zero, and d1 and d2 represent the di-
mension of the audio and visual features, respectively. In CCA,
the correlation coefficient is calculated as follows:

�(a, b) = corr(a�Xaudio, b
�Xvisual) (1)

=
a��avb

p
a��aaa

p

b��vvb
, (2)

where a 2 Rd1 , b 2 Rd2 are the projection vectors, which
are parameters of CCA, and �av 2 Rd1�d2 , �aa 2 Rd1�d1 ,
�vv 2 Rd2�d2 are the cross-covariance matrices of Xaudio and
Xvisual, the covariance matrix of Xaudio and Xvisual, respec-
tively. Since �(a, b) is invariant to scalling of a and b, we as-
sume that each standard variance of denominator in Eq. (2) has
one; that is the projections are constrained to have unit variance,

max
a,b

a��avb subject to a��aaa = b��vvb = 1 (3)

If we use L  min(d1, d2) pairs of linear projection vectors,
the projection matrices for audio and visual features are formed
as U 2 Rd1�L and V 2 Rd2�L, respectively. We obtain the
following formulation to identify the projection matrices A and
B:

maximize tr(A��avB) (4)

subject to A��aaA = B��vvB = I,

where tr(·) and I indicate the sum of the elements on the main
diagonal and the unit matrix, respectively.

The optimal objective value is the sum of the top k singu-
lar values of T = �

�1/2
aa �av�

�1/2
vv . The optimal projection

matrices are given by (A, B) = (�
�1/2
aa Uk, �

�1/2
vv Vk), where

Uk 2 Rd1�k and Vk 2 Rd2�k are the first k left- and right-
singular vectors of T. Indeed, the covariance matrices �aa and
�vv are estimated from data using regularization so that they
are constrained to the nonsingular matrix.

2.2. Deep Canonical Correlation Analysis

DCCA computes the representations of the two views by pass-
ing them through multiple stacked layers of nonlinear transfor-
mation. Given the audio and visual features (Xaudio,Xvisual),
the outputs of the audio and visual neural networks are written
as f(Xaudio; ✓1) 2 Ro�N , f(Xvisual; ✓2) 2 Ro�N , respec-
tively. ✓1, ✓2 indicate parameters of the audio and visual net-
works, respectively. DCCA computes the total correlation as

follows:

corr(a�f(Xaudio; ✓1), b
�f(Xvisual; ✓2)) = tr(T�T)

1
2 ,

(5)

where T = �̂
�1/2
aa �̂av�̂

�1/2
vv as reviewed in section 2.1.

�̂av = 1
N�1XaudioX

�
visual and �̂aa = 1

N�1XaudioX
�
audio +

r1I are the covarince matrices with regularization constant r1 >

0, similarly for �̂vv . The goal of DCCA is to jointly learn pa-
rameters {✓1, ✓2, u, v} for both views, such that the correlation
is as high as possible. The parameters {✓1, ✓2} are trained us-
ing back-propagation. The gradient of Eq. 5 can be computed
as follows:

�corr(a�f(Xaudio; ✓1), b
�f(Xvisual; ✓2))

�f(Xaudio; ✓1)

=
1

N � 1
(2�aaXaudio + �avXvisual) (6)

where �ab = �̂
�1/2
aa UV��̂

�1/2
vv and �aa =

� 1
2 �̂

�1/2
aa UDV��̂

�1/2
aa , and the derivative with respect

to f(Xvisual; ✓2) has a symmetric expression.
General DNN objective functions are written as the expec-

tation (or sum) of error functions (e.g., squared loss) calcu-
lated for each training sample. This property naturally suggests
stochastic gradient descent (SGD) for optimization, where gra-
dients are estimated for a few training examples (a mini-batch)
and iteratively updated parameters. However, in DCCA (Eq. 5),
it is necessary to estimate the covariance matrices for the train-
ing samples. Andrew et al. [11] used a full-batch algorithm
(L-BFGS) for optimization. This is undesirable for applications
with large training sets, as each gradient step computed on the
entire training set can be very expensive in both memory and
time. To mitigate this problem, Wang et al. [12] showed that
it works well, even for this type of objective, if larger mini-
batches are used. It is considered that a large mini-batch has
enough information to estimate covariances. Hence, in this pa-
per, we also configure a larger mini-batch size.

3. Related Works
Deep learning has had recent successes for acoustic model-
ing [15]. Deep neural networks (DNNs) contain many layers of
nonlinear hidden units. The key idea is to use greedy layer-wise
training with restricted Boltzmann machines (RBMs) followed
by fine-tuning. Ngiam et al. [16] proposed multimodal DNNs
that learn features over audio and visual modalities. Mroueh
et al. [17] improved this method and proposed an architec-
ture considering the correlations between modalities. Ninomiya
et al. [6] investigated integration of bottleneck features using
multi-stream hidden Markov models (HMMs) for audio-visual
speech recognition.

CNNs also have demonstrated impressive performance on
several tasks, such as image analysis [18, 19, 20] and spoken
language [21] and music recognition [22]. In our previous
work [8], we showed that the features extracted from CNNs lead
to effective results for speech recognition thanks to the proper-
ties of the local receptive field and the shift invariant. Therefore,
in this paper we do not use DNNs, but CNNs, for nonlinear
mappings of two modalities.

Recently, multimodal learning has been researched in rela-
tion to discovering useful information about the world. If such
methodology can be used to develop an accurate system, we
would be able to obtain non-verbal information that cannot, at
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Figure 1: Deep CCA using CNNs

this time, be explained expressly and cannot be obtained from
discriminative models. Unsupervised learning is an approach
to can be used to handle this problem. For multimodal fusion
tasks, several approaches have been proposed [23, 24] where
modalities are modeled using a generative model that is based
on an RBM. For speech recognition tasks, the reproducibility of
the input data is not necessary due to the fact that a DCCA ap-
proach is concise. In this paper, we employ DCCA with CNNs
as a robust feature extractor for the fluctuation of the speech
uttered by a person with cerebral palsy.

4. Multimodal Feature Extraction Using
DCCA

4.1. Flow of the Proposed Method

Figure 1 shows the flow of our proposed feature extraction. To
employ advantages of our previous work [8], we use CNNs for
the mappings of DCCA instead of DNNs. Hereafter, f(·; ✓) in
section 2.2 indicates a CNN operation where the input is two-
dimensional.

First, we prepare the input features for training a CNN from
lip images and speech signals uttered by a person with hear-
ing loss. For the audio signals, after calculating short-term mel
spectra from the signal, we obtain mel-maps by merging the mel
spectra into a 2D feature with several frames, allowing overlaps.

The visual signals of the eyes, mouth, nose, eyebrows, and
outline of the face are aligned using the point distribution model
(PDM), and its model parameter is estimated by constrained lo-
cal model (CLM). Then, a lip image is extracted, and the ex-
tracted lip image is interpolated to fill the sampling rate gap
between visual features with respect to audio features. In this
paper, we adopted spline interpolation to the lip images.

The parameters of audio and visual CNNs are jointly
learned by back-propagation with SGD where the gradients are
calculated by DCCA objective function, starting from random
values. Following the training of both CNNs, the input mel-map
and lip images are transformed to the output units through each
CNN, and projected linearly as follows:

�t = �̂�1/2
aa Ukf(Xt; ✓1) (7)

�t = �̂�1/2
vv Vkf(Yt; ✓2), (8)

where (Xt, Yt) are two-dimensional input feature for audio and
visual at time t, and (�t 2 Rk, �t 2 Rk) are the correspond-
ing features, respectively. Then these features are concatenated,
and [��

t ��
t ]� 2 R2k is used as the feature in the training of

HMMs for speech recognition.

4.2. Application to Speech Uttered by a Person with Hear-
ing Loss

DCCA has an advantage for speech uttered by a person with
hearing loss. In the case of an articulation disorder, the phone
label estimated by forced alignment may not be correct. How-
ever, several approaches based on DNN use the phone label as
the target class to learn parameters. The DCCA accomplishes
the training procedure in an unsupervised fashion to find the
maximal correlation between two sets of modalities. Therefore,
the feature extracted from networks trained by DCCA is not in-
fluenced by some wrong phone labels. By using DCCA, audio
and visual features are transformed through networks so that
output units have a high correlation. In noisy environments,
we expect that even if the audio feature is degraded, the trans-
formed feature has adequate robustness because this feature has
a high correlation to the visual feature which is noise-invariant.

5. Experiments
5.1. Recognition Results Using a Speaker-independent
Acoustic Model

At the beginning, we attempted to recognize utterances using
a speaker-independent acoustic model for unimpaired people
(This model is included in Julius [25]). The acoustic model
consists of a triphone HMM set with 25-dimensional MFCC
features (12-order MFCCs, their delta and energy) and 16 mix-
ture components for each state. Each HMM has three states
and three self-loops. For a person with hearing loss, a recog-
nition rate of only 3.24% was obtained, but for a physically-
unimpaired person, a recognition rate of 88.89% was obtained
for the same task. It is clear that the speaking style of a person
with hearing loss differs considerably from that of a physically-
unimpaired person. Therefore, it is considered that a speaker-
dependent acoustic model is necessary for recognizing speech
from a person with hearing loss.

5.2. Word Recognition Experiments

5.2.1. Experimental Conditions

Our proposed method was evaluated on word recognition tasks.
We recorded utterances of one male person with hearing loss,
where the text is the same as the ATR Japanese speech database
A-set [26]. We used 2,620 words as training data, and 216
words as test data. The utterance signal was sampled at 16
kHz and windowed with a 25-msec Hamming window every 5
msec. For the acoustic-visual model, we used the monophone-
HMMs (54 phonemes) with 3 states and 6 mixtures of Gaus-
sians. We compare our audio-visual feature with conven-
tional MFCC+�+�� (36-dimensions) and MFCC+�+��+
discrete cosine transform (DCT) (66-dimensions). Then, our
proposed method and audio-visual features were evaluated in
noisy environments. White noise was added to audio signals
and their SNR is set to 20dB, 10dB, and 5dB. Audio CNN and
HMMs are trained using the clean audio feature.

5.2.2. Architecture of the Networks

We construct deep networks, which consist of a convolution
layer, a pooling layer, and fully-connected MLPs. For the in-
put layer of audio CNN, we use a mel-map of subsequent 13-
frames with 39-dimensional mel spectrum, and the frame shift
is 5 msec. For the input layer of visual CNN, frontal face videos
are recorded at 60 fps. Luminance images are extracted from
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Table 1: Filter size, number of feature maps and number of
MLPs units for each architecture. The value for C indicates the
filter size of the convolution layer that has #1 maps. The convo-
lution layer is associated with the pooling layer. The value of S
means the pooling factor. The value for M indicates the number
of units for each layer in the MLP part.

Input C S #1 M

Audio CNN 39⇥13 4⇥2 3⇥3 13 108, 30, 108

Visual CNN 12⇥24 5⇥5 2⇥2 13 108, 30, 108

the image using CLM and resized to 12⇥24 pixels. Finally, the
images are up-sampled by spline interpolation and input to the
CNN.

Table 1 shows parameters used in experiments. We set the
bottleneck layer into networks to investigate the performance
of bottleneck features. In the training procedure, a learning rate
and a momentum are set to be 0.0001 and 0.99, respectively.

5.2.3. Number of Mini-batch Sizes

In the preliminary experiment, we compared the effects of
changing the number of mini-batches with 50 epochs in a clean
environment. Table 2 shows the results when changing the num-
ber of mini-batches as 1,200, 1,500, 1,800, 2,100 and 2,400.
Through the experiments, we found that the performance im-
proves as the number of mini-batches increased. The reason for
the improvement is attributed to being able to estimate the co-
variance matrix more accurately when using larger mini-batch
sizes. In the future experiments, we will use a mini-batch size
of 2,100.

Table 2: Word recognition accuracy for each mini-batch size

# of mini-batches 1,200 1,500 1,800 2,100 2,400

Recognition
accuracy [%] 63.89 65.28 66.20 71.76 71.76

5.2.4. Results and Discussion

Figure 2 shows the word recognition accuracies in
noisy environments. We compared the audio-visual
feature extracted from our proposed method with
two conventional features: MFCC+�+�� (MFCC),
MFCC+�+��+DCT (MFCC+DCT). In Figure 2, DCCA
and DCCA bottleneck denote the features extracted from the
final projection layer and the bottleneck layer (30-dimensions).
Comparing DCCA bottleneck with DCCA, the former shows
better accuracies. This is because the information that the
audio feature has is lost when it is transformed to near the
visual space. The DCCA bottleneck feature is better than
MFCC+DCT in SNR of 10dB. This might be because the
DCCA bottleneck feature obtained more noise-robustness
compared with the conventional feature. These results show
our proposed method improves performance.

Figure 3 shows the word recognition accuracies comparing

Figure 2: Word recognition accuracy using HMMs

our proposed method with the previous method [8]. The DCCA
framework is the unsupervised learning that is applied to the ac-
tual data in order to find the maximal correlation between two
sets of modalities without other information. Therefore, the ex-
tracted feature might not be able to present the phonological
information. Our previous work employed supervised learning
using the phone labels. In our experiments, the accuracy of the
DCCA bottleneck degraded on average 14% compared to using
supervised learning.

Figure 3: Word recognition accuracy of unsupervised and su-
pervised training procedure

6. Conclusions
In this paper, we discussed an audio-visual speech recognition
system for a person with an articulation disorder resulting from
severe hearing loss based on CNNs. We proposed a feature ex-
traction method using CNNs trained by deep CCA which is op-
timized in an unsupervised manner. In the DCCA procedure,
audio and visual CNNs are trained maximizing the correlation
between the units of each output layer. When a noisy input sig-
nal is fed to CNNs, although the audio feature is degraded, the
visual feature compensates for the degraded audio feature data
to increase accuracy. Then, the degradation of accuracy is re-
strained in high-noisy environments.

In comparison, in experiments between the proposed fea-
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ture and a conventional unsupervised feature (MFFC+DCT),
the proposed feature showed better performances than the con-
ventional one. The improvement was more significant in high-
noisy environments. However, the performance of the proposed
method was lower than that of the supervised method. This re-
sult suggests that using DCCA, the phonological information
are not necessarily extracted.

In future work, we will further investigate a better DCCA-
based feature extraction which is also highly correlated to the
phonological information. Person with an articulation disor-
der resulting from severe hearing loss need the various appli-
cations for communication, for example, voice-to-signal con-
version system. Although their speech style is so different from
that of people without hearing loss, they can make appropriate
lip shapes. Therefore, the voice-to-signal conversion system is
able to help the interaction with others. We will also research
this system in future work.
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