
FACIAL EXPRESSION RECOGNITION WITH DEEP AGE

Zhaojie Luo, Jinhui Chen, Tetsuya Takiguchi, Yasuo Ariki

Graduate School of System Informatics, Kobe University, Kobe, Hyogo, Japan
{luozhaojie, ianchen}@me.cs.scitec.kobe-u.ac.jp, {takigu, ariki}@kobe-u.ac.jp

ABSTRACT

This paper presents a novel deep learning framework for fa-
cial expression recognition (FER). Our framework is derived
from Convolutional Neural Networks (CNNs), adopting out-
line, texture, and angle raw data to generate 3 different convo-
lutional feature maps for deep learning. In so doing, the pro-
posed method is cable of robustly classifying expressions, by
emphasizing the facial deformation, muscle movement, and
outline feature descriptions. Therefore, our method makes the
facial expression task not only more tractable, but also more
reliable in the case of expression images, which leads to an
overall improvement of classification performance compared
to conventional methods. The proposed method is valid for
the Static Facial Expression Recognition (SFEW) database,
improving the baseline results by 6.98%.

Index Terms— facial expression recognition, Convolu-
tional Neural Networks, AGE features

1. INTRODUCTION

Facial expression recognition (FER) is one of the most signif-
icant technologies for auto-analyzing human behavior. It can
be widely applied to various application domains. Therefore,
the need for this kind of technology in various different fields
continues to propel related research forward every year.

In this paper, we propose a novel framework adopting the
angle, outline, and texture feature maps to describe the fa-
cial features. To obtain a discriminative expression classifica-
tion model, these initial feature data are fed into a CNN for
deep learning. There are two main contributions in this study.
The first one is that we have designed a deep CNN that is
suitable for training small amounts of available labeled data.
Second, we found that combining the angle, outline, and tex-
ture descriptor together can describe the expression features
better than other raw data. Therefore, using this feature re-
pression mechanism for deep learning, we can gain an overall
significant improvement of facial expression recognition per-
formance compared to the conventional raw data.

The proposed CNN architecture is derived from VGG
net [1], which is a deep visual recognition architecture and
the winner in the ImageNet Large-Scale Visual Recognition
Challenge 2014 (ILSVRC). However, due to its deep struc-
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Fig. 1. Input image is converted to 3D AGE features, ’A’
means the matrix containing the angle values, ’G’ represents
the matrix containing the gradient values and ’E’ means the
edge image.

ture, the original VGG Visual Recognition framework re-
quires massive amounts of labeled training data [2]. Since the
existing referenced datasets do not contain large expression
data, these approaches are not yet available for expression
recognition tasks. Consequently, we need to design a more
suitable deep CNN architecture for facial expression recogni-
tion.

Within this decade, deep CNN has obtained excellent per-
formance in a wide variety of image classification tasks, and
these CNN-based models usually use the RGB color space as
input features or perform PCA on the set of RGB pixel val-
ues. In contrast, we propose novel transformations of input
images to 3D features that adopt the edge to describe outline
features, angle to describe the facial deformation features and
gradient to indicate the texture for muscle movement repre-
sentation. In this way, the proposed framework can robustly
classify the facial expression classes. Fig. 1 shows the de-
tails of 3D feature maps implementation. We call the 3D fea-
tures AGE features. In our experiments, the results confirmed
that using AGE features with a CNN learning platform out-
performs other raw data feature maps for FER.
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In the remainder of this paper, we describe the related
work in Section 2. Our proposed method is described in Sec-
tion 3, and Section 4 gives the experimental results and anal-
ysis. Concluding remarks are made in Section 5.

2. RELATED WORK

Facial expression recognition (FER) is a typical multi-class
classification problem in Affective Computing and has re-
ceived increasing interest in the last two decades. Many
attempts have been made to recognize facial expressions.
Most of the existing work utilizes various human-crafted fea-
tures, including Gabor wavelet coefficients, Haar features,
histograms of Local Binary Patterns (LBP) [3], Histograms
of Oriented Gradients (HOG) [4], and scale-invariant feature
transform (SIFT) descriptors [5]. Images represented using
these features were then classified for different emotions us-
ing a Support Vector Machine (SVM) [6] or AdaBoost [7].
Recently, unsupervised feature learning approaches have been
employed to extract features from facial images. and these
have shown promise in facial expression analysis. To become
more adaptable to the unsupervised features, deep learning
networks have been employed for FER applications. Tang
[8] reported on a deep CNN jointly learned with a linear sup-
port vector machine (SVM) output. Liu et al. [9] proposed
a facial expression recognition framework with a 3D CNN
and deformable action parts constraints in order to jointly lo-
calize facial action parts and learn part-based representations
for expression recognition. The work by Yu et al. [10] uti-
lized multiple deep network learning for static facial expres-
sion recognition. Similar to some of the models listed above,
we propose a deep CNN, and use it to train pre-processed im-
age features, which are the AGE features. AGE features are
similar to HOG features, which are rather sensitive to object
deformations, but, unlike HOG features, AGE features are 3D
features that contain edge images, angle values, and gradient
values, which can be trained well by our proposed deep CNN.

2.1. Deep CNNs

Though CNNs were introduced more than three decades ago,
it is only recently that they have become a predominant
method in image classification tasks. With the increase in
computation power, algorithmic improvements, and the fact
that current GPUs, when paired with highly-optimized imple-
mentation of 2D convolution, are powerful enough to facili-
tate the training of deep architecture CNNs, the huge number
of model parameters is no longer a limiting factor in mak-
ing use of CNNs in practical settings. Thus, recent CNNs
are getting deeper than ever before, (e.g., the VGG-net [1],
which uses over 16 layers to build deep CNNs and proved to
be capable of achieving record breaking results on a highly
challenging database).

Before introducing the architecture of the proposed CNN

models, we will describe some important features of the net-
works architecture.

2.1.1. Max pooling

Pooling layers in CNNs summarize the outputs of neighbor-
ing groups of neurons in the same kernel map. In our CNN
model, we used max pooling for pooling layers which parti-
tions the input image into a set of non-overlapping rectangles
and, for each such sub-region, outputs the maximum value.
There are two reasons for choosing the max pooling layer.
First, it can eliminate non-maximal values to reduce compu-
tation for upper layers. Second, max pooling provides ad-
ditional robustness to position, and it is an effective way of
reducing the dimensionality of intermediate representations.
In our proposed networks, the window sizes of the pooling
layers are set to 3×3 and the strides are both set to 2. This re-
duces the sizes of the response maps to half after each pooling
layer.

2.1.2. ReLU

ReLU is the abbreviation ofRectified Linear Units [11]. This
is a layer of neurons that applies the non-saturatingactivation
function f (x) = max(0, x). It increases the nonlinear
properties of the decision function and of the overall net-
work without affecting the receptive fields of the convolu-
tion layer. It has been proven to be trained much faster in
networks than the saturating nonlinearities, such as the hy-
perbolic tangent f (x) = tanh(x), and thesigmoid function:
f (x) = (1 + e−x)−1.

2.1.3. Batch-size normalization

Batch-size normalization (BN) was proposed by GOOGLE
in 2015 [12].It can avoid the exploding or vanishing caused
by a too-high learning rate or by getting stuck in poor local
minima. BN normalizes each (scalar) feature independently
with respect to the mean and variance of the mini batch. The
normalized values are scaled and shifted with two new pa-
rameters (per activation) that will be learned. BN makes nor-
malization part of the model architecture. By normalizing ac-
tivations throughout the network, it prevents small changes in
layer parameters from being amplified as the data propagates
through a deep network. BN greatly reduces the time required
to train CNNs. In particular, the gains are greater when it is
combined with higher learning rates. In addition, BN works
as a regularizer for a model that allows the use of less dropout
or less L2 normalization.

2.2. Feature Representation

There are many researchers who have focused on image rep-
resentation methods. In the MPEG-7 standard [13], color de-
scriptors consist of a number of histogram descriptors, such
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Fig. 2. Overview of the proposed facial expression recognition system. The system is divided in two main steps: training and
testing. The training step takes raw images as input and resizes them to 64×64 images. N represents the number of input images
for training. To increase the number of input images from N to G, we extract 56×56 patches from 64×64 images and do their
horizontal reflections. Here, G equals 8×8×2×N. Then, we process AGE features for each 56×56 image. The transformed
56×56×3×G features preprocessed from the G pictures are used to train the Convolutional Neural Network. The testing step
uses the similar methodology as the training step. We resize the input image to 56×56 and transform it to 56×56×3 AGE
features for testing. The convolutional networks calculate the scores for the AGE features and the one with the highest score is
chosen from seven expressions.

as the dominant color descriptor, the color layout descrip-
tor, and a scalable color descriptor [13, 14]. Researchers
have also made wide use of texture descriptors, which pro-
vide the important information of the smoothness, coarseness,
and regularity of many real-world objects, such as fruit, skin,
clouds, trees, bricks, and fabric, etc., including Gabor filtering
[15], and local binary pattern (LBP) [16] are two examples
of this. Generally, texture descriptors consist of the homo-
geneous texture descriptor, the texture browsing descriptor,
and the edge histogram descriptor. More recently, researchers
have begun to combine color descriptors and texture descrip-
tors, such as the multi-texton histogram (MTH) [17] and the
micro-structure descriptor (MSD) [18]. They use Gabor fea-
tures to separately compute the color channels. This is done
so that they can combine the color channels with classical
texture descriptors to improve the feature describing ability.
Inspired by these feature-combination methods, we adopt an-
gle (A), gradient (G) and edge (E), which we refer to as AGE,
to describe the outline information, texture information, and
geometrical information for faces. For CNN learning mod-
els, we have found experimentally that the above input data
performance is better than the other raw data (e.g., color data
R-B-G) for FER.

3. PROPOSED METHOD

We train the deep CNN models based on cuDNN implemen-
tation of a 7-hidden-layers CNN. As shown in Fig. 2, be-
fore training the images from SFEW, we resized all images
to 64×64. Then, we extract random 56×56 patches and their
horizontal reflections from the 64×64 images to increase the
size of our training set by a factor of 128. By doing so,it re-
duces the possibility of over-fitting when using a deep CNN.
After that, we transform them to gray-scale, and then pre-
process the gray-scale images to 3D features AGE, which is
compatible with being trained in our proposed CNN models.
The proposed CNNs were trained to predict 7D vectors of
emotion class probabilities using the labeled training data that
consist of seven different emotion classes. In order to predict
the emotion labels, the selected class is the one with the high-
est probability in the resulting 7D average prediction vector.
In the remainder of this section, we will describe the process-
ing of AGE features and our proposed CNN model.

3.1. AGE Features Extraction

Implementing the network shown in Fig. 3, the input images
applied recursively to down-sampling layers reduce the com-
putational complexity for upper layers and reduce the dimen-
sion of the input, also the network has a 3× 3 receptive field
that processes the sub-sampled input and output the expres-
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Fig. 3. An illustration of the architeture of our convolutional neural network

sion recognized images.
In this study, the initialized sample images are calculated

using an angle filter, gradient filter, and edge filter to obtain
the initial convolutional layers:

v1 = I
⊗

Da,

v2 = I
⊗

Dg,

v3 = I
⊗

De,

(1)

where v is the initial map layer, I donates the sample im-
age, and Da, Dg , and De indicate the angle filter, gradient
filter, and edge filter, respectively. In practice, the receptive
field size of 5 × 5 is shown better than the others. These
pre-processed data are fed to the following CNN layers for
learning.

3.2. Proposed CNN models

A CNN architecture is formed by a stack of distinct layers
that transform the input volume into an output volume, and
the convolutional layer is the core building block of a CNN.
The layers of a CNN have neurons arranged in 3 dimensions:
width, height, and depth. As shown in Fig. 3, the 3 dimen-
sions of the input layer are 56, 56 and 3. The neurons inside a
layer are only connected to a small region of the layer before
it, called a receptive field. Distinct types of layers, both lo-
cally and completely connected, are stacked to form the CNN
architecture. The spatial size of the output volume can be
computed as the function below.

W2 =
(W1 −K + 2P )

S
+ 1 (2)

where W1 is the input volume size, K represents the kernel
field size of the Convolutional Layer neurons, S is the stride
(the distance between the receptive field centers of neighbor-
ing neurons in a kernel map), and P is the amount of zero

padding used on the border, respectively. As shown in Fig. 3,
W = 56, K = 5, and S = 2, and we set P at 2. So the spatial
size of the output volume, which is the input of the second
layer, can be calculated with the result being W2 = 28.

An overview of our CNN architecture is depicted in Fig. 3.
The net contains seven layers with weights; the first four are
convolutional and the remaining three are fully connected lay-
ers containing dropout [19]. The output of the last fully-
connected layer is fed to a 7-way softmax, which produces
a distribution over the 7 class labels. The kernels of all con-
volutional layers are connected to the previous layer, and neu-
rons in the fully connected layers are connected to all neurons
in the previous layer. Batch-normalization [12] layers follow
the first and second convolutional layers. the max pooling
layers described above follow both batch-normalization lay-
ers. The nonlinear mapping functions for all convolutional
layers and fully connected layers are set as a rectified lin-
ear unit (ReLU) [11]. The first convolutional layer filters the
56 × 56 × 3 image with the 64 kernels of size 5 × 5 × 3
with a stride of 2 pixels. The stride is the distance between
the receptive field centers of neighboring neurons in a ker-
nel map, and we set the stride of the filters to 1 pixel for all
the other convolutional layers. The input of the second con-
volutional layer is the output of the first convolutional layer,
which is batch-normalized and max pooled. And the second
convolutional layer filters the input with 128 kernels of size
3 × 3 × 64. The third convolutional layer has 128 kernels of
size 3 × 3 × 64 connected to the outputs of the second layer
(batch-normalized and max pooled). The forth convolutional
layer has 128 kernels of size 3×3×128. The fully-connected
layers have 1, 028 neurons each.

3.3. Details of Learning

We trained our deep CNNs using a NVIDIA GTX745 4GB
GPU. In the CNN learning model, there are some important
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parameter settings, including weight decay, momentum, batch
size, learning rate, and the cycles of learning. We show the
detailed settings of the learning models below. Our training
used asynchronous stochastic gradient descent with 0.9 mo-
mentum [20], and a weight decay of 0.0005. The update rule
for weight w was represented as followed:

mi+1 = 0.9 ·mi − 0.0005 · ε · wi − ε ·
〈
∂L

∂w
|wi

〉
Di

(3)

wi+1 = wi +mi+1 (4)

where i is the iteration index, m is the momentum variable,
ε is the learning rate, and

〈
∂L
∂w |wi

〉
Di

is the average over the
ith batch Di of the derivative of objective with respect to w,
evaluated at wi. Increasing the batch size leads to a more
reliable gradient estimate and can reduce the training time,
but it does not increase the maximum stable learning rate. So,
we need to choose a suitable batch size for our models. We
trained our models with batch sizes of 64, 128, 256, and 512,
respectively. Then, we find the most suitable batch size for the
models. We used an equal learning rate for all layers, which
we adjusted manually throughout training. The learning rate
was initialized at 0.1, and the heuristic that we followed was
to divide the learning rate by 10 when the validation error
rate stopped improving with the current learning rate. We
trained the network for roughly 20 cycles using the training
set images.

4. EXPERIMENTS

The experiments were performed using the Static Facial Ex-
pression in the Wild (SFEW) database [11], and using the
training and testing methodology described in Fig. 3. The
SFEW was assembled by selecting frames from different
videos of the Acted Facial Expressions in the Wild (AFEW),
and then assigning them one of the following seven emotion
labels: angry, disgusted, happy, sad, surprised, fearful, and
neutral.

To find the most suitable batch size for the proposed CNN
models, we compared the training effectiveness of the differ-
ent batch sizes. As shown in Fig. 4, the batch size of 256
got best results. Then, we compared effective of AGE fea-
tures and the original RGB features without any intervention
or image pre-processing training by the same models. Fig. 5
compares our method with the color feature descriptors that
were implemented for facial expression recognition classifiers
with deep CNN models. Real-world images usually do not
contain homogenous textures or regular textures; thus, tex-
ture filters are usually used to enhance the other feature de-
scriptors for image representation. In many related works,
researchers combine color and texture; thus, their describing
ability is powerful. But they have ignored local outline rep-
resentation. This limits their discrimination power. The pro-
posed method adopts data maps, which connect outline, tex-

ture, angle, and color data with the CNN learning model. In
so doing, the proposed framework has significantly enhanced
the representation ability and robustness of features. There-
fore, its performance outperforms the conventional raw data
and single-type feature descriptors.
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Fig. 4. Training the AGE features with different batchsize 64,
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Fig. 5. Training AGE features and RGB features in the pro-
posed CNN models with the 256 batchsize.

5. CONCLUSIONS AND FUTURE WORK

In this study, we proposed a deep classification framework
for facial expressions recognition. The proposed framework
combines outline, texture, angle, and color data to generate
3 different feature maps for CNN model learning. The pro-
posed classification framework was evaluated with the ref-
erenced database (SFEW) to experimentally confirm the va-
lidity of the proposed method. The results show these ap-
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proaches enhance the discriminative power of the deep clas-
sification framework and gain an overall significant improve-
ment in facial expression recognition performance compared
to the conventional raw data. These issues are important to
those with related research interests.

In future work, we will attempt to apply the proposed
framework to the other classification tasks, such as handwrit-
ing image recognition.
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