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Abstract

Zero-shot learning (ZSL) refers to the task of learning a
model capable of classifying images into classes for which no
sample is available as training data. This can be achieved by
leveraging semantic features of the visual classes as an inter-
mediate level of representation shared by both training classes
(for which labeled images are provided as training data) and
test classes (for which no image is available for training). Fol-
lowing the success of deep learning models in the traditional
task of image classification, ZSL has recently attracted a lot
of attention from the computer vision community as it holds
the promise of scaling up the classification capacity of tradi-
tional image classifiers while easing the data collection pro-
cess. While several models have recently been introduced for
ZSL, arguably little attention has been given to the design of
the visual class semantic features. In this paper, we propose
to leverage the interlinking of knowledge bases published as
Linked Open Data to provide different semantic feature rep-
resentations of visual classes in a large-scale setting. Using
a simple ZSL architecture, we compare the efficiency of the
semantic features we extracted and find that some of them
outperform the standard word embedding representations by
a significant margin.

1. Introduction
The task of image classification naturally precedes ZSL. The
introduction of the ImageNet dataset (Deng et al. 2009) and
the related ImageNet Large Scale Visual Recognition Chal-
lenge have played an important role in the recent success of
image classifiers as it provided computer vision practitioners
with training data of a new scale. With thousands of image
samples available for thousands of classes, ImageNet has set
the stage for the success of Convolutional Neural Networks
(CNNs). ImageNet’s wide coverage of naturally occurring
objects allows CNNs to learn efficient mid-level visual fea-
tures that generalize well to unseen visual distributions so
that CNNs pretrained on ImageNet can be successfully fine-
tuned and applied to a variety of tasks (Oquab et al. 2014).

However, image classifiers require a balanced training set
with a considerable amount of image samples per visual
classes. As the granularity of the classes increases, two prob-
lems arise. First the image collection and annotation process
becomes very expensive. Second, the computation itself be-
comes intractable. As state of the art n-way classifiers use
one-hot encoding of classes, they cannot computationally

handle an exponentially increasing number of classes. ZSL
models offer the perspective of scaling up the discrimina-
tive capability of visual classifiers without requiring any ex-
pensive data collection. To achieve this, ZSL models embed
visual classes in a semantic vector space. Then, using the
correlations between training and test classes at the seman-
tic level, the visual knowledge learned from a set of training
classes can be transferred to a set of unseen test classes.

In ImageNet, visual classes are indexed by WordNet
(Miller 1995) synonym set (synset) IDs. Synonym sets
group together word senses conveying a similar meaning.
They are linked to each other by semantic relationships into
the WordNet hierarchy. The main advantage of using Word-
Net synsets as class identifiers is that it allows for word-
sense disambiguation of the visual concepts. In the context
of large-scale visual categories, this is important to avoid bi-
ases introduced by homonymy in natural languages. For ex-
ample, learning distinct visual classes for musical jams, traf-
fic jams, and marmalade jam seems more meaningful than
learning one jam visual concept embedding these three dif-
ferent meanings of the same word. While in small-scale im-
age classification settings, homonymy biases are unlikely to
occur, large-scale settings (i.e, dealing with thousands of vi-
sual classes) inevitably suffer from homonymy biases if the
visual classes are defined at the lexical level; i.e, by words in
natural languages. For example, among the 21,845 WordNet
synsets for which ImageNet provides images, 1,444 classes
share their first lexical form with at least one other synset,
with up to 6 different synsets sharing the same first lexical
form queen. Despite this high degree of homonymy, all re-
cent ZSL models applied in large-scale settings use word
embeddings as semantic representations. Hence, they lose
the benefit of ImageNet’s use of the WordNet word-sense
disambiguation feature.

Another interesting feature of WordNet that has been ig-
nored by the computer vision community is that WordNet
has been integrated to the Linked Open Data (LOD) cloud
as part of its Linguistic LOD sub-cloud. Linked Data (Bizer,
Heath, and Berners-Lee 2009) refers to a set of best prac-
tices to be adopted by web data publishers in order to inte-
grate their data into a web of data; i.e, the semantic web. The
LOD cloud references openly published datasets that follow
the Linked Data best practices. As one important aspect of
these best practices, LOD datasets contain links from their



resources to the resources of other LOD datasets.
In this paper, we propose to use the interlinking of

WordNet to other knowledge bases integrated to the LOD
cloud, namely the semantic network Babelnet (Navigli and
Ponzetto 2012) and the knowledge graph DBPedia (Auer
et al. 2007). We extract semantic feature representations of
ImageNet visual classes from these two knowledge bases.
In addition, we investigate two other semantic modali-
ties. The first one is provided by (Iacobacci, Pilehvar, and
Navigli 2015). It uses the neural word embedding model
word2vec (Mikolov et al. 2013) trained on a word-sense dis-
ambiguated corpus of Wikipedia. The second modality uses
topic-modeling techniques to extract semantic features from
the full text of Wikipedia articles. Using LOD interlinkings,
we are able to map WordNet synsets to Wikipedia articles in
a fully automated process.

The main contributions of this paper are as follow:

• We show how LOD can be used to automate the gener-
ation of visual class semantic features. We extract rich
semantic features, either directly from knowledge bases
of the LOD cloud, or by using LOD knowledge bases in
combination with text data from Wikipedia articles.

• We run a set of experiments to compare the efficiency of
these semantic features in the context of large-scale ZSL,
and find that they generally outperform the traditionally
used word embeddings by a large margin.

The rest of this paper is organized as follows: We first
present related work on ZSL in section 2. In section 3, we
detail the automatic semantic feature extraction process, and
we further present the extracted semantic features. In section
4, we present the ZSL model we used for our experiments
and in Section 5 we describe our experiment settings and
results. Section 6 concludes with comments on our present
results and introduces future research.

2 Related Work
2.1 ZSL Models
Most early works on Zero-shot learning used human-
annotated visual attributes as semantic descriptions of visual
classes. In their pioneer work on attribute learning, (Lam-
pert, Nickisch, and Harmeling 2009) proposed two frame-
works for ZSL: Direct Attribute Prediction (DAP) models
first map visual inputs to the attribute space, then classify
among unseen test classes based on the attribute prediction
scores and the attribute signature of the test classes. Indi-
rect Attribute Prediction (IAP) first learns a n-way classifier
on the training classes. The classification score of training
classes is used to predict the attribute scores, then classifica-
tion among unseen test classes is similarly performed based
on the attribute prediction scores. (Frome et al. 2013) first
explored the use of word embeddings for zero-shot learning
in a large-scale image classification setting. A few works
((Norouzi et al. 2013),(Zhang, Xiang, and Gong 2016) and
others) followed their setting and improved on their results.
Interestingly (Norouzi et al. 2013) can be seen as a simple
case of IAP whereas (Frome et al. 2013) implements a DAP
model.

(Shigeto et al. 2015) identified the hubness problem as a
main drawback to regression-based zero-shot classification.
They advocate projecting semantic features into the visual
feature space for nearest-neighbor search rather than con-
ducting nearest neighbor search in the semantic space. Re-
cently, transductive zero-shot learning (Fu et al. 2014) has
been introduced. In a transductive setting, test images are
made available during training as unlabeled data so that the
global distribution of the test samples can be leveraged to
alleviate some limitations of inductive ZSL models s.a. the
hubness problem in (Dinu, Lazaridou, and Baroni 2014).
In this paper however, we focus on the more general case
of ZSL in an inductive setting. We found (Socher et al.
2013) give an instructive early overview of related fields and
(Zhang, Xiang, and Gong 2016) provide a more complete
and complementary review of recent works.

2.2 Semantic Data for ZSL
While the majority of works on ZSL use word embeddings
as semantic features in large-scale settings and visual at-
tributes in small-scale settings, some works have explored
the use of different semantic features. In the early work
of (Larochelle, Erhan, and Bengio 2008), the authors ap-
plied ZSL (which they refer to as zero-data learning) to per-
form license plate digit recognition. They trained a predic-
tive model on decimal numbers, and used pictograms of both
digits and Roman characters to transfer the visual knowledge
and classify the Roman characters on the license plates. This
contrasts with the rest of the literature we review as their
semantic representations are simple image-like representa-
tions whereas both attribute-based and word embeddings are
based on high level concepts formulated in natural language.

In (Rohrbach et al. 2010), the authors used different lin-
guistic resources to derive semantic similarity scores be-
tween classes, between classes and attributes, and to auto-
matically mine attribute-classes correspondence. Similar to
our work, they automate the acquisition of semantic data
from knowledge bases, but they focus on deriving semantic
similarity scores and part attributes while we extract more
elaborate semantic features. (Mensink, Gavves, and Snoek
2014) used visual classes co-occurrence statistics to perform
ZSL. Given a training set of multi-labeled images and sim-
ilarity scores between known and unknown labels, they use
the co-occurrence distribution of known labels to predict the
occurrence of unknown labels in test images. Although a
multi-labeled image setting differs from our image classi-
fication setting in which both training and test images are
given unique identifiers, their work represents an interest-
ing line of research complementary to ours. (Mukherjee and
Hospedales 2016) questioned the limits of using a single
data point (word embedding vectors) as semantic representa-
tions of visual classes because this setting does not allow the
representation of the intra-class variance of semantic con-
cepts. They used Gaussian distributions to model both se-
mantic and visual feature distributions of the visual classes.

As semantic representations drawn from different distri-
butions are often complementary, combining them can im-
prove recognition performance. (Akata et al. 2015) success-
fully used a combination of word embeddings, visual at-



tributes, hierarchical structure and Wikipedia article text as
semantic features. In a small-scale setting, they were able
to manually collect the Wikipedia articles corresponding to
their visual classes. (Zhang, Xiang, and Gong 2016) com-
bined visual attributes with sentence descriptions to substan-
tially improve on the state of the art. The success of their
model motivates our belief that rich and diverse semantic
features are essential to performing ZSL recognition. This
work aims to provide such semantic data.

3 Semantic Representations
Existing ZSL works in a large-scale setting use word em-
beddings as semantic representations, with the notable ex-
ception of the early work by (Rohrbach, Stark, and Schiele
2011). In this paper, we question the common practice of
using lexical forms (words) to represent visual classes. Our
motivation is two-folds: First, ImageNet classes are actu-
ally defined at the semantic level (as WordNet synsets),
and not at the lexical level (as words). As similar words
can carry very different semantic meanings (e.g, musi-
cal/traffic/marmalade jam), they similarly exhibit very dif-
ferent visual appearances when they refer to different mean-
ings. Second, considering visual classes as semantic mean-
ings gives us access to a wealth of knowledge resources from
which we can extract rich semantic features. In this section
we first present the automated process we used to match Im-
ageNet classes to resources of various knowledge bases. We
then present how we generate semantic feature vectors from
these knowledge bases, and further describe the different se-
mantic representations we used in our experiments.

3.1 Linking Process
In its simplest form, the World Wide Web consists of a set
of HTML documents linked together by embedding the URI
of other HTML documents within their content. Hence, it is
a web of documents since HTML documents are the inter-
linked resources. The semantic web was born from the idea
of creating a web of data; i.e, linking web resources at the
data level instead of the document level. Linked Data defines
best practices to interlink data in a standardized way within
the semantic web. WordNet synsets, Babel synsets and DB-
Pedia resources are all resources in the context of Linked
Data. To map WordNet synsets to resources of rich knowl-
edge bases, we crawl the RDF data of the LOD cloud for
equivalence links between these resources. BabelNet uses
the SKOS vocabulary to provide matching links between
WordNet and Babel synsets. We use these links to associate
ImageNet classes to a unique Babel synset ID. BabelNet also
provides similar links between Babel synsets and DBPedia
resources. We use the transitive nature of these links to as-
sociate a unique DBPedia entity to ImageNet classes. The
mappings between DBPedia resources and Wikipedia arti-
cles are provided by DBPedia.

It should be noted that the matching of entities across
knowledge bases do not always come as one-to-one associ-
ations. In the case of one-to-several mapping, we apply very
simple heuristics to reduce them to one-to-one mappings.
To evaluate the accuracy of our end-to-end mappings be-
tween Wordnet synsets and Wikipedia articles, we manually

checked a set of one hundred (WordNet synset, Wikipedia
page) associated pairs. Both the simple heuristics and the
results of our manual evaluation are provided as supplemen-
tary material1.

Furthermore, our extraction process does not match all
WordNet entities across all datasets. The main bottleneck of
this mapping process is the missing links from Babel synsets
to DBPedia resources. In total, we are only able to generate
matches across all knowledge bases for 11.069 out of the
21.845 WordNet synsets for which ImageNet provides im-
ages. In the rest of this paper, we focus on the subset of
11.069 ImageNet classes. More statistics on the generated
mappings can be found in the supplementary material1. We
refer to the ith visual class as si so that si ∈ S, where S is
the set of available classes, so we have card(S) = 11, 069.
Similarly, we refer by sikb ∈ Skb to the resource of the ith

visual class in a knowledge base kb. For example s7bn stands
for the Babel synset associated to the 7th visual class.

3.2 Graph Propositionalization
In the previous section, we described how we mapped each
visual class si ∈ S to resources sikb ∈ Skb in three knowl-
edge bases: BabelNet, DBPedia and Wikipedia. Both DB-
Pedia and BabelNet are graph structures Gkb = {Ekb, Vkb}
defined by a set of nodes Vkb and edges Ekb. So, in both
cases, visual classes are mapped to a node in a graph sikb ∈
Skb ⊂ Vkb. However, ZSL models require semantic features
in propositional form, i.e, vectors of numerical, nominal or
binary values. The process of generating a vector represen-
tation of a graph node has been referred to as propositional-
ization (Ristoski and Paulheim 2014). Here we explore two
propositionalization approaches:

First, we explore a Bag of Words approach. Let’s consider
a node vikb ∈ Vkb in a knowledge graph Gkb = {Ekb, Vkb}.
It is connected to k other nodes in the graph by typed-edge
relationships vikb → ei,j → vi,j , with (ei,j , vi,j) ∈ Ekb ×
Vkb. In this approach, we represent visual classes by the set
of outgoing links Okb(s

i
kb) = {(ei,j , vi,j)} ⊂ (Ekb×Vkb)

ki

connecting them to other nodes in the knowledge graph. The
vocabulary of the resulting BoW model is defined by:

Okb =
⋃

si
kb

∈Skb

Okb(s
i
kb) ⊂ (Ekb × Vkb)

d

where d = card(Okb) is the dimension of the resulting BoW
encoding vectors. This approach is similar to the Features
Derived from Specific Relations in (Ristoski and Paulheim
2014) and it is illustrated in Appendix C of the supplemen-
tary material. We apply the TF-IDF transform to the BoW
vectors and reduce their dimension to 400 using truncated
Singular Value Decomposition (SVD).

Second, we consider an adaptation of neural language
models to graph structures introduced in (Ristoski and Paul-
heim 2016). Neural language models learn vector represen-
tations of words in a vocabulary from a coprus of words se-
quences. In order to apply these models to graph structure,

1The supplementary material can be found at
https://github.com/TristHas/SNL-supplementary-material



a corpus of sequence must be extracted from the graph. In
their original work, the authors first generate a corpus made
of all depth-n paths of their graph. Each path consists of
a sequence (vi → ei,1 → vi,1 → ... → ei,n → vi,n)
. Then, considering both nodes and vertices as words of
a same vocabulary, they train a word2vec model on the
generated corpus. We replicate their method and generate
for each class node sikb ∈ Skb a set of 200 depth-8 ran-
dom walks initialized in sikb. The corpus we gather con-
tains 11.609 × 200 unique length-9 sequences. We train a
word2vec model on this corpus with the following configu-
rations: window size=5, dimension=400, n-gram model with
negative sampling of 25 samples. The model is optimized
through 5 iterations. We refer to features generated by this
approach as rdf2vec after the name of the original work.

3.3. BabelNet
BabelNet (Navigli and Ponzetto 2012) is a multilingual
semantic network originally created by the fusion of
Wikipedia and WordNet. Since its original publication, it
has evolved to integrate several other resources s.a. Wiki-
data and FrameNet. It consists of over 13M concept nodes
v ∈ V called Babel synsets, connected by a set of di-
rected edges ej ∈ E. Edges ej are annotated with a lan-
guage among BabelNet’s 271 languages, a weight value, and
a type which encodes one of 2.554 different semantic rela-
tionships. Semantic relationship types range from the formal
’Hypernym/Hyponym’ relationships to the very loosely de-
fined ’semantically related’ relationship. In our experiments,
we did not consider the language nor weight annotations of
the edges, resulting in a graph Gbn = {Ebn, Vbn}, where
card(Ebn) = 2.554 and card(Vbn) = 13M . We generate
both rdf2vec and BoW semantic features from this graph.

3.4. DBPedia
DBpedia (Auer et al. 2007) is a crowd-sourced community
effort to extract structured information from Wikipedia and
make this information available on the Web as LOD. Using
a shallow ontology and automated extractors, it has become
one of the most widely used Knowledge Graphs. DBpedia
also plays a central role in the LOD cloud as many datasets
link their resources to DBPedia resources. The full DBPe-
dia knowledge graph is provided as several distinct datasets.
In our experiments, we used the DBPedia subgraph made of
the page links, mapping based object properties, resource
type, and resource categories datasets extracted from En-
glish Wikipedia pages. More details on the DBPedia datasets
we used in our experiments can be found in Appendix B of
the supplementary material1. Similar to BabelNet, we con-
ducted experiments with both rdf2vec and BoW semantic
vectors.

3.5. Wikipedia
Using LOD, we associated each visual class to a matching
Wikipedia article as described in section 3.1. As semantic
feature vectors, we compute a Bag-of-Word representation
of the text of these articles. Our BoW model uses an unre-
stricted vocabulary made of the full set of words contained

in the set of 11,609 articles. We conduct experiments on the
resulting vectors after two distinct transformations. First we
directly reduce the dimension of the BoW feature vectors
using truncated SVD (also known as Latent Semantic Anal-
ysis). Second, we first compute the TFI-IDF transformation
of the BoW features, and then reduce the dimension of the
transformed vectors using truncated SVD.

3.6. Sense Embeddings
The last semantic representation we investigate is provided
by (Iacobacci, Pilehvar, and Navigli 2015). In this work,
the authors perform word-sense disambiguation on the En-
glish Wikipedia corpus. Babelfly, a word-sense disambigua-
tion system based on BabelNet, is used so that the words
of the corpus are converted to BabelNet word-senses. Then,
a word2vec model is trained on the disambiguated corpus
to compute 400-dimension word-senses embedding vectors.
This way, the model learns embeddings of word senses in-
stead of words in their lexical form and we are able to di-
rectly associate a unique word-senses embedding to each of
the ImageNet classes.

3.7. Word Embeddings
For comparison with existing works, we also conduct exper-
iments using word embeddings as semantic features. To al-
low for fair comparison with the sense embeddings, we train
a word2vec model with configurations similar to (Iacobacci,
Pilehvar, and Navigli 2015): CBOW architecture, hierarchi-
cal softmax objective, window size 5 and 400-dimension
embedding vectors. As WordNet synsets correspond to sev-
eral words and most words appear in several synsets, Im-
ageNet classes cannot be directly associated a unique word
embedding vector. We replicate the procedure of the original
work (Frome et al. 2013) as described in their supplementary
material to deal with ambiguous situations.

4. ZSL Model
To conduct our experiments, we used a simple linear map-
ping between visual and semantic features similar to (Frome
et al. 2013). As in the original work, we train our model with
a hinge loss, using stochastic gradient descent.

During training, we consider a set of training classes si ∈
Strain and a knowledge base kb. For each class, we have
a set of n sample visual features {xi,k|k ∈ [1, n]} and a
semantic feature vector skbi ∈ Skb

train. Training is performed
by minimizing over W the following loss:

L(xi,k) =
∑
j 6=i

max(0,margin− skbi Wxi,k + skbj Wxi,k),

with k ∈ [1, n] and (skbi , skbj ) ∈ (Skb
train)

2.
At test time, we consider a set of test classes si ∈ Stest

so that Stest ∩ Strain = ∅. Given a knowledge base kb and
a test sample xtest, classification is performed by selecting
the test class yielding the highest similarity score:

i = argmaxskb
i

∈Skb
test

(skbi Wxtest)

As visual features, we use the activation values of the top
hidden layer of a ResNet-50 (He et al. 2016) pretrained on



the ILSVRC2012 image classification task. The supplemen-
tary material includes a visual illustration of this model. It
differs from the original work in two ways:

We use a ResNet-50 to extract visual features, whereas
the original work uses the AlexNet model.

For implementation convenience, we use the activation
values of the top layer of our model as fixed visual features
and we do not back-propagate the error gradient through the
network for an end-to-end training.

5. Experiments
5.1. Experiment Settings
Few ZSL works report results on a large-scale setting. A
comprehensive summary of existing work can be found in
the results section of (Zhang, Xiang, and Gong 2016). Ex-
isting works follow either of the two experimental settings:

Experimental setting A: 800 classes are randomly sam-
pled from the ILSVRC classification dataset and used as the
training set and the remaining 200 classes are used as the
test set.

Experimental setting B: 1000 classes of the ILSVRC im-
age classification are used as the training set and test splits
of increasing size and difficulty are selected from ImageNet.

The set of visual classes for which we have generated se-
mantic features does not cover the full set of the ILSVRC
classification dataset. Hence, we cannot replicate the exact
same experiment setting for a fair comparison. Instead, we
randomly sample a set of 1000 ImageNet classes for which
we have generated semantic feature representations. Using
this modified 1000-classes dataset, we replicate both settings
in 5.2 and 5.3 respectively. In both cases, we compare the re-
sults we obtain for each semantic feature representation.

5.2. Experimental Setting A

Table 1: Top-k accuracy in Setting A (%)
Accuracy measure Top-1 Top-5 Top-10
Word Embedding 9.64 29.53 43.44
Sense Embedding 12.67 36.78 51.09
WikipediaBoW 13.61 39.97 56.61
Wikipediatfidf 14.0 42.98 57.57
BabelNetBoW 12.5 39.86 54.12
BabelNetrdf2vec 3.64 12.74 21.47
DBpediaBoW 11.45 37.55 51.83
DBpediardf2vec 4.2 16.29 27.07

Table 1 shows the flat top − k accuracy for different k
and semantic features. We can see that nearly all our se-
mantic features outperform word embeddings. Sense em-
beddings provide a 24.5% relative improvement over word
embeddings on the standard top-5 accuracy metric. This im-
provement is surprisingly high considering that they have
been learned with a similar model. This illustrates the ad-
vantage of defining visual classes at the semantic level as
word senses instead of the lexical level as words.

Both DBPedia and BabelNet BoW semantic features pro-
vide a relative improvement larger than 26.% over the word

embeddings on the top-5 accuracy metric. We find DBPe-
dia and BabelNet to show relatively similar performance
and that simple BoW propositionalization approaches gave
the best results. The rdf2vec approach yields disappoint-
ing results, even significantly inferior to word embeddings.
We believe this might be due to the small size of the ran-
dom walk corpus we generated. These corpora are made of
roughly 2M length-9 sequences, which is orders of mag-
nitude smaller than the full text corpus of the English
Wikipedia on which both words and sense embeddings have
been trained. Wikipedia articles yield the best results on all
three metrics, with up to 45.2% relative improvement of the
top-1 accuracy.

5.3. Experimental Setting B

Table 2: Top-5 accuracy in setting B (%)

Test classes 100 200 500 1000 2000
Word Embedding 39.52 29.0 18.52 12.59 10.35
Sense Embedding 49.24 37.01 22.65 14.55 11.14
WikipediaBoW 49.76 41.27 24.48 14.73 11.77
Wikipediatfidf 53.06 44.98 27.72 17.82 15.12
BabelNetBoW 49.78 39.86 23.18 14.51 11.91
BabelNetrdf2vec 23.82 13.77 7.26 3.94 3.04
DBpediaBoW 48.08 39.12 24.08 15.57 13.45
DBpediardf2vec 28.02 18.36 9.10 5.362 4.83

Table 2 shows the flat top − 5 accuracy results for dif-
ferent sizes n of the test set. These results show a simi-
lar trend to the one observed in Experimental setting A:
BoW features extracted form either Wikipedia articles or
knowledge graphs provide significant improvement over
word embeddings. This experience also highlights another
trend: the Wikipedia representations seem to scale better
with larger test sets: On a relatively small 100-class test
set, Wikipedia representations provide a 34.26% relative im-
provement, while for larger test sets, the relative improve-
ment is between 45% and 50 %. The feature representation
we used (textual BoW, TFIDF transform with Latent Seman-
tic Analysis) has been developed to index large sets of docu-
ments, which might explain its better scaling to a large near-
est neighbor search.

6. Conclusion
ZSL is a complex task that requires both powerful models
and efficient semantic representations of the visual classes.
In this paper we showed how Linked Open Data can be
leveraged to generate rich semantic features of ImageNet’s
visual classes. Existing ZSL approaches label visual classes
with words and leverage word embeddings as semantic
features. Instead of that approach, we consider ImageNet
classes for what they are: resources defined at the seman-
tic level and integrated to the LOD cloud. This enables us to
extract semantic representations either directly from LOD
knowledge bases, or by jointly leveraging these knowledge
bases with text data from Wikipedia. Using a simple ZSL



baseline model, we found that the semantic features we gen-
erated generally outperform word embeddings by a signifi-
cant margin.

In future work, we plan on using these semantic features
with more complex ZSL architectures. Recent works like
(Zhang, Xiang, and Gong 2016) or (Akata et al. 2015) have
been able to successfully combine different semantic views
to improve on ZSL recognition rates. As the semantic fea-
tures we generated are drawn from different data sources
with different distributions, we believe they might prove
complementary and further improve on the state of the art.
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