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ABSTRACT

Video emotion recognition as an emerging research field has
been attracting more and more focus in recent years. Howev-
er, such work is quite challenging, since human emotions are
hard to differentiate precisely due to its complexity and diver-
sity, moreover, the expressions of sentiment in a content-rich
video are sparse. Previous studies presented a number of ap-
proaches to try to learn human emotions on video level by ex-
ploiting various video features. However, most of works just
used simple low-level video features such as hand-crafted im-
age features, and they also did not consider the further latent
connections among different multimodal data within a video.
To tackle these problems, we develop a novel Bayesian non-
parametric multimodal data modeling framework to learn the
emotions from video, where the adopted image data are deep
features extracted from key frames of video via convolution-
al neural networks (CNNs), and the adopted audio data are
Mel-frequency cepstral coefficient (MFCC) features. In this
framework, we then use a symmetric correspondence hierar-
chical Dirichlet processes (Sym-cHDP) model to mine their
latent emotional events (topics) between image features and
audio features. Finally, the effectiveness of our framework is
demonstrated via comprehensive experimentations.

Index Terms— convolutional neural networks, Bayesian
nonparametric methods, emotion recognition

1. INTRODUCTION

Nowadays, people are not merely content with some studies
about simple pattern recognition for video. In other word-
s, they are becoming more interested in video deep under-
standing through some cutting-edge techniques in the field of
computer vision and machine learning. For instance, emotion
recognition for videos is one of the popular research topics
currently. This technique can help us understand the emotion
of people shown in a video clip by using visual information
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and audio information. It is promising to be applied in video
recommendation services as auxiliary means, which can ef-
fectively find users’ interests and recommend the correspond-
ing videos to them based on obtained video emotion.

According to the theories about close interaction between
cognitive processes and emotional appraisals [1], human e-
motions are complex and diverse. For learning emotions from
videos, it is a more challenging work, since the expressions
of sentiment are sparsely distributed in a video, furthermore,
the multimodal data (such as image data and audio data ex-
tracted from video) processing and modeling for video emo-
tion recognition are tricky as well. Previous studies provid-
ed a number of proposals for emotion recognition in videos.
Kang [2] proposed a method for detecting affective events
through hidden Markov models (HMM), where simple low-
level video features including color, motion and shot cut rate
are extracted and utilized for mapping to high-level emotion-
al events via an empirical study. Xu et al. [3], Teixeira et
al. [4] and Jiang et al. [5] focused on emotion classification
for videos by jointly using both visual features and audio fea-
tures, however, they just used simple multimodal data fusion
methods without considering the further latent connections
over all the multimodal data types, moreover, most of adopt-
ed visual features are also low-level features. More recent-
ly, along with the rapid development of convolutional neural
networks (CNNs) [6, 7, 8], people attempt to further improve
the performance of emotion recognition via CNNs. Chen et
al. [9] and You et al. [10] exploited corresponding CNN mod-
els to analyze emotions on image level, the results demon-
strated such deep features outperform hand-crafted low-level
features and features from SentiBank. Then, Xu et al. [11]
first proposed an video emotion recognition framework based
on deep features extracted from CNNs, their study showed
a comprehensive discussion on the evaluations of emotion
recognition among different CNNs and also the features from
different layers of each CNN. However, auxiliary images are
necessary for deep feature transfer encoding, and the multi-
modal data fusion strategy in their work also looks simple.

To tackle the problems mentioned above, we present
a novel Bayesian nonparametric multimodal data modeling
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Fig. 1. A flowchart of our proposed method for video emotion classification.

framework for video emotion recognition in this paper. Ac-
cording to the framework, CNN-based deep features and M-
FCC features drawn from videos are deemed as image fea-
tures and audio features. Then, we introduce a symmetric
correspondence hierarchical Dirichlet processes (Sym-cHDP)
model [12] to further learn the latent emotional events (topic-
s) from image features and audio features. Based on learning
results, a supervised classifier will be utilized to predict an e-
motional label for each video. Comparative experiments are
conducted to evaluate the effectiveness of our method from
different aspects.

2. FRAMEWORK

As we mentioned in Sec. 1, human emotion recognition for
videos is a quite challenging work due to its complexity, di-
versity and sparsity. To improve the emotion learning perfor-
mance, we adopt a Bayesian nonparametric multimodal data
modeling method to further understand the latent sentimental
information from extracted video deep features.

Firstly, we give an overview of our framework, which is
depicted in Fig. 1. From this figure, we can find that there are
two core models embedded in this framework: one is a CN-
N model for deeply learning the images drawn from videos,
the other is a Bayesian nonparametric topic model (i.e., Sym-
cHDP) for modeling image features and audio features via
mining their latent emotional events (topics).

According to the flowchart of our method, image data and
audio data are firstly extracted from each video. For images,
we then input them to a CNN model. Generally, CNN archi-
tecture involving a sequence of deep learning layers is directly
utilized for image classification [6, 7, 8]. However, recent s-
tudy [11] shows that the features drawn from deeper layers in
CNN express more in-depth information, such as sentimental
information. In our work, we therefore draw the correspond-
ing image deep features via CNN for emotion recognition.
The details about CNN models and deep features adopted in

our work will be specified in Sec. 3.1. Meanwhile, for audio
data, we uniformly sample a 24-dimensional MFCC descrip-
tor over every 5 ms time-window with 50% overlap from en-
tire soundtrack of each video. Such MFCC features are good
audio representation for the case of emotion recognition.

Then, we use a symmetric correspondence hierarchical
Dirichlet processes (Sym-cHDP) model [12] to handle the
multimodal data modeling issue in our framework. Sym-
cHDP as an extension of HDP [13] is also a Bayesian non-
parametric topic model. Original HDP is well-known for text
mining, whose theory assumes that each text document is rep-
resented as a mixture of latent topics, and each latent topic is
represented as a word distribution. HDP models multiple text
documents as multiple infinite Dirichlet processes connect-
ed by sharing the same mixture of components (topics). In
the case of video emotion analysis, we are inspired that the
structure of emotion expression in video multimodal data has
a similar form. We respectively use visual words and audio
words to represent CNN-based deep features and MFCC fea-
tures. For each video, the video emotion can be expressed
with a collection of latent emotional events occurring in the
video, while each emotional event reflects in corresponding
visual words and audio words. For instance, there is a user-
generated video clip showing that a little girl is scared when
she is watching a horror movie. The scared can be consid-
ered as an emotional event, which simultaneously causes a
fearful facial expression in visual data, and a crying voice in
audio data. Therefore, we use Sym-cHDP model incorporated
with a symmetric correspondence mechanism to mine the la-
tent emotional events between visual words and audio words
within each video, which is very meaningful and helpful for
video emotion analysis. The detailed modeling process will
be specified in Sec. 4.

Note that Sym-cHDP is an unsupervised model, which
means a supervised classifier should be joined up after this
unsupervised learning process, for predicting a real emotional
label for each video.
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3. DESCRIPTION OF FEATURES

3.1. CNN-based Deep Features

The latest generation of CNNs, such as AlexNet [6], VGG [7]
and GoogleLeNet [8], have achieved remarkable performance
for large-scale image classification tasks due to their deep and
systematic learning architecture. However, when facing more
abstract and complex learning scenario such as image/video
emotion recognition, directly using such CNNs cannot per-
form as good as they did on image classification. But these
attempts are still significative, since they provided important
clues that the features drawn from high-level (deeper) layers
in CNNs potentially contain some sentimental information.

The latest study [11] experimentally demonstrates
AlexNet and VGG deep architectures are more suitable for
video emotion recognition than GoogleLeNet deep architec-
ture. Besides, the features extracted from fully connected lay-
ers work more effectively than the ones extracted from con-
volutional layers. In our method, we therefore respectively
draw the features from fully connected layers in AlexNet,
VGG-F [7] and VGG-S [7] as our deep features to conduct
the video emotion recognition tasks. Note that VGG mod-
el evolving from AlexNet model has several different archi-
tecture designs due to considering different accuracy/speed
trade-offs. Here, two typical VGG models, i.e., VGG-F and
VGG-S, are selected for our work, where VGG-F focuses on
speed, and VGG-S focuses on accuracy. Since there are two
fully connected layers (fc6 and fc7) existing in each of three
CNN models, we totally evaluate six different combination
patterns of deep features during the experimental phase.

3.2. Extraction of Visual Words and Audio Words

Since extracted deep features and MFCC features cannot be
directly utilized in Sym-cHDP, we need to convert these fea-
tures into independent visual words and audio words.

For CNN-based deep features, each deep feature drawn
from fc6 layer or fc7 layer is an m-dimensional vector, which
can be expressed with Dfj = (dfj1, dfj2, ..., dfjm), note
that f is the index of video, and j is the index of image. We
assume that each element d maps to an exclusive type of vi-
sual word, which means the vocabulary size of visual word
VD is equal to m. After drop-out processing, each element in
deep feature vector becomes a nonnegative continuous vari-
able, which can be considered as a likelihood of correspond-
ing visual word. Then, we can draw the visual word count
vector nfj from a multinomial distribution:

nfj = (nfj1, nfj2, ..., nfjVD
) ∼ Multinomial(N,PDfj

)
(1)

where N is the total number of visual words, and N =∑VD

v=1 nfjv . PDfj
is a normalized representation for Dfj .

In this way, the visual word set Xfj for image j in video f
can be filled with sampled N visual words. On video lev-
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Fig. 2. Graphical representation for SBC of Sym-cHDP.

el, we can obtain the visual word set Xf for video f with
Xf = {Xf1,Xf2, ...,XfJf

}, where Jf is the total image
counts in video f .

For audio MFCC features, we assume that each 24-
dimensional MFCC descriptor represents an audio word.
Then, we use a simple K-means method to cluster all the
MFCC descriptors into VM clusters, which is treated as the
vocabulary size of audio word. Since an MFCC descriptor is
sampled per 5 ms, the total audio word counts for each video
will depend on the length of the video.

4. MULTIMODAL DATA MODELING

4.1. Generative Process

As we mentioned in Sec. 2, the video emotion can be ex-
pressed with a collection of latent emotional events occurring
in the video, while each emotional event reflects in corre-
sponding visual words and audio words. To cope with such
multimodal data modeling issue for video emotion analysis,
we therefore adopt a Sym-cHDP model [12], which incor-
porates a flexible symmetric correspondence mechanism [14]
for modeling the generative process of video multimodal da-
ta. In Fig. 2, we illustrate a stick-breaking construction (S-
BC) [13] of Sym-cHDP with a graphical representation. Sim-
ilar to original HDP, Sym-cHDP also has a two-layer hierar-
chy with global measure G and local measure Gf , where f
denotes the index of the video. For SBC, we respectively use
component (topic/emotional event) weight vectors β and πf

to construct corresponding measures in Sym-cHDP, the pro-
cess is described as below:

G =

∞∑
k=1

βkδφk , Gf =

∞∑
k=1

πfkδφk (2)

where each component weight vector consists of an infi-
nite number of corresponding component weights, i.e., β =
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{β1, β2, ..., βk, ...} and πf = {πf1, πf2, ..., πfk, ...}. δφk
is

a probability measure concentrated at component φk.
Then, the generative process of Sym-cHDP is described

with following steps:
Step 1: We draw the global component weight vector β from
GEM(γ) with a hyperparameter γ.
Step 2: Conditioned on β and hyperparameter αf , each local
component weight vector πf is drawn from DP (αf ,β).
Step 3: For each video, we draw a multinomial pivot flag gen-
erator σf from Dir(λ) with a hyperparameter λ.
Step 4: For the ith word of data type1 l in video f , a pivot flag

s
(l)
fi is drawn from Multinomial(σf ).

Step 5: If s(l)fi = l, draw an emotional event z(l)fi from πf .

Otherwise if s(l)fi = h �= l, draw an emotional event z(l)fi from

Uniform(z
(h)
f1 , ..., z

(h)

fH
(h)
f

).

Step 6: Conditioned on sampled z
(l)
fi , a word x

(l)
fi is drawn

from f(x
(l)
fi |φ(l)

k , k = z
(l)
fi ).

Here, GEM() indicates a GEM process [13], which
is formed by such a process: β̂k ∼ Beta(1, γ), βk =

β̂kΠ
k−1
i=1 (1 − β̂i). DP () and Dir() represent Dirichlet pro-

cess and Dirichlet distribution, respectively. Different from
other correspondence mechanisms [15], Sym-cHDP utilizes a
multinomial pivot flag generator, which samples a pivot flag
to control the way of generating the emotional event for the
current word. For the word x

(l)
fi with data type l, if its sam-

pled pivot flag points at the same data type (i.e., s(l)fi = l),
the process of its emotional event assignment will be inde-
pendent from other emotional event assignments and only as-
sociated with πf . However, if its sampled pivot flag points at
the other data type h (i.e., s(l)fi = h �= l), its emotional even-
t will be drawn from a uniform distribution that includes all
the emotional events assigned to H

(h)
f words with those pivot

flags. Different from word counts N
(h)
f , H(h)

f is the num-
ber of words that have been already assigned with emotional
events at the current step. Hence, H(h)

f ≤ N
(h)
f . Addition-

ally, f(x(l)
fi |φ(l)

k ) indicates a word distribution conditioned on

φ
(l)
k . In fact, all the {φ(l)

k }2l=1 drawn from a base measure H
share the same K emotional events.

Through such symmetric correspondence mechanism,
Sym-cHDP can model the multimodal data with latent con-
nections more flexibly, which is very beneficial to video emo-
tion analysis.

4.2. Inference Method

In this section, we derive an inference method to estimate the
latent emotional events and other variables within Sym-cHDP
based on posterior representation sampler [16].

1In our work, we only consider visual and audio words, so l ∈ {1, 2}.

First of all, two component weight vectors β and πf are
sampled by:

β = (β1, ..., βK , βu) ∼ Dir(T·1, ..., T·K , γ) (3)
πf = (πf1, ..., πfK , πfu) ∼ Dir(π̃f1, ..., π̃fK , αfβu) (4)

where every original infinite component weight vector is re-
formulated with a new augmentable finite vector that consists
of K components and a promising component u. T·k is a new
variable that denotes the table counts in the Chinese restauran-
t franchise (CRF) representation [13] of Sym-cHDP, we can
find more detailed explanation and sampling approach for T·k
in paper [13]. In addition, π̃fk = αfβk +

∑
(l) C

(l)
flk, where

C
(l)
flk denotes the counts for the word with data type l in video

f possessing the pivot flag with the same data type l when the
sampled emotional event is k.

As we described in Sec. 4.1, the pivot assignment affects
the way of sampling emotional event in Sym-cHDP. We there-
fore derive a full conditional joint likelihood for estimating
both emotional events z(l)fi and pivot flag s

(l)
fi for each word:

P (z
(l)
fi = k, s

(l)
fi = l|x(l)

fi ) ∝ P (s
(l)
fi = l)P (z

(l)
fi = k)P (x

(l)
fi |z(l)fi = k)

=

⎧⎪⎪⎨
⎪⎪⎩

C
−fli
fl

+λ

C
−fli
fl

+
∑

l′ �=l Cfl′+2λ
· πfk · f−x

(l)
fi

k (x
(l)
fi ) if k is used

C
−fli
fl

+λ

C
−fli
fl

+
∑

l′ �=l Cfl′+2λ
· πfu · f−x

(l)
fi

knew (x
(l)
fi ) if k is newborn

(5)

P (z
(l)
fi = k, s

(l)
fi = h|x(l)

fi ) ∝ P (s
(l)
fi = h)P (z

(l)
fi = k)P (x

(l)
fi |z(l)fi = k)

=
C−fli

fh + λ

C−fli
fh +

∑
h′ �=h Cfh′ + 2λ

· n
(h)
fk

N
(h)
f

· f−x
(l)
fi

k (x
(l)
fi ) (6)

where Cfl denotes the counts for the pivot flag pointing at da-
ta type l over all the multimodal data in video f , and a super-
script −fli appearing in Cfl (i.e., C−fli

fl ) means the removal

of the pivot flag count for the word i. n(h)
fk denotes the counts

for emotional event k assigned to words of data type h in

video f . f
−x

(l)
fi

k (x
(l)
fi ) and f

−x
(l)
fi

knew (x
(l)
fi ) are two different types

of conditional word likelihood functions conditioned on emo-

tional event k. When the k is previously used, f
−x

(l)
fi

k (x
(l)
fi ) is

formulated with:

f
−x

(l)
fi

k (x
(l)
fi = v(l)) =

∫
f(x

(l)
fi = v(l)|φ(l)

k )p(φ
(l)
k |X−fli

lk , H) dφ
(l)
k

=
n−fli

kv(l) + τ∑
v(l) n

−fli

kv(l) + V (l)τ
(7)

when the k is newborn, f
−x

(l)
fi

knew (x
(l)
fi ) is formulated with

f
−x

(l)
fi

knew (x
(l)
fi ) = 1

V (l) , where v(l) is the index of words in the
vocabulary of data type l. X−fli

lk is a set involving all the word-
s of data type l with emotional event k except for x(l)

fi . n−fli
kv(l)

is the counts for the word v(l) assigned to emotional event k
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Table 1. Unimodel Results with Different Deep Features
Methods CNN HDP(0.1) HDP(0.5) HDP(1.0)

AlexNet fc6 24.68 23.85 24.87 24.13
fc7 20.53 25.85 24.75

VGG-F fc6 28.01 26.38 28.84 27.78
fc7 23.84 26.52 25.14

VGG-S fc6 31.27 28.11 33.15 31.65
fc7 26.83 31.35 29.94

except for x(l)
fi . V (l) is the vocabulary size of data type l. τ is a

hyperparameter for a Dirichlet distribution, and H = Dir(τ).
Finally, we apply Gibbs sampling approach to implement

this inference method for Sym-cHDP. In this way, the latent
emotional events can be well learned from observed visual
words and audio words within each video.

5. EXPERIMENTS

5.1. Experimental Setup

In this experiment, an Acted Facial Expressions in the Wild
(AFEW)2 dataset that comprises 957 video clips extracted
from movies, is adopted for evaluation. In AFEW dataset,
several key frames deemed as image data are drawn from each
video clip for emotion recognition. Videos are categorized
with seven basic emotions containing angry, happy, disgust,
fear, sad, surprise and neutral.

For deep feature extraction, we adjust the dimension m of
fc6 layer and fc7 layer for each CNN from 4096 to 1024 to
cut the computation cost, which means the vocabulary size of
visual word VD is specified to 1024. For each key frame, we
set the total number of extracted visual words N to 5120. For
audio MFCC feature extraction, the vocabulary size of audio
word VM is set to 1000.

For the initialization of nonparametric topic models (i.e.,
HDP, Sym-cHDP and other baseline models), the hyper-
parameters γ and αf are sampled from a gamma prior
Gamma(1.0, 1.0), and updated every iteration. The Gibbs
sampling system will totally run 1000 iterations so as to let
all the variables in the model fully converge.

A simple LIBLINEAR3 classifier is finally utilized in our
framework for video emotion classification. We conduct eval-
uations with a five-fold cross-validation scheme. The perfor-
mance is measured by average classification accuracy.

5.2. Unimodal Analysis on Deep Features

In this section, we focus on unimodal (only image data used)
emotion analysis by using CNN and HDP, to evaluate the
performance on different CNN models and different types of
deep features within these CNN models, as shown in Tab. 1.

2https://cs.anu.edu.au/few/AFEW
3https://www.csie.ntu.edu.tw/ cjlin/liblinear/

Table 2. Multimodal Results with Different Methods
CNN Models AlexNet VGG-F VGG-S

Features fc6 fc7 fc6 fc7 fc6 fc7

LIBLINEAR 24.11 24.78 28.21 28.54 31.88 30.02
SVM 24.32 25.88 29.65 29.11 32.11 31.88

CI-HDP 25.31 26.16 28.85 27.56 34.10 32.25
Corr-HDP(Visual) 25.52 26.53 29.94 28.21 34.34 32.91
Corr-HDP(Audio) 24.32 25.52 28.54 27.91 33.56 31.79

Sym-cHDP 27.95 27.89 31.07 29.94 35.22 33.11

Evaluation on Deep Features with HDP. HDP as a unimod-
el version of Sym-cHDP is utilized for evaluating the emotion
classification performance on different types of deep features.
In this experiment, we respectively assign the controlling pa-
rameter τ with τ = 0.1, τ = 0.5 and τ = 1.0, to conduc-
t three different sets of experiments. According to Tab. 1,
for the cases of using VGG-F and VGG-S, the deep features
drawn from the fc6 layer significantly outperform the ones
drawn from the fc7 layer, while such phenomenon is not so
clear in the case of using AlexNet. This indicates that the fc6
layer may involve more sentimental information than the fc7
layer for the same image. Besides, we can find that the HDP
performs the best when τ = 0.5.
Comparison between CNN methods and HDP methods.
To validate the effectiveness of HDP model, we also conduct
three comparative experiments by directly using three differ-
ent CNN models. The results demonstrate that the optimized
HDP outperforms CNN method by 4.47%, 2.96% and 6.01%,
when using AlexNet, VGG-F and VGG-S, respectively. This
indicates that the learning process for latent emotional events
in HDP can actually boost the emotion recognition perfor-
mance. Besides, we observe that VGG-S performs the best
among all the CNN models, so we infer that the VGG-S ar-
chitecture is more suitable for the emotion recognition task.

5.3. Multimodal Analysis

Finally, comprehensive experiments based on video multi-
modal data (visual data and audio data) are conducted for e-
valuating our method and other baselines. Here, we select two
styles of baseline sets: the baseline models in the first set are
general classifiers including LIBLINEAR and SVM, where
the deep features and MFCC features are simply fused with-
out being further learned, the baseline models in the second
set are other nonparametric topic models including condition-
ally independent HDP (CI-HDP) inspired by paper [17], and
correspondence HDP (Corr-HDP) inspired by paper [15]. In
the initialization phase, we set τ = 0.5 to all the nonparamet-
ric topic models, and set λ = 1.0 to Sym-cHDP. The experi-
mental results are shown in Tab. 2.

Compared with both LIBLINEAR and SVM, our method
with Sym-cHDP significantly outperforms those general clas-
sifiers for every scenario, which demonstrates that the mined
latent emotional events from visual words and audio word-
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s via Sym-cHDP are very useful for video emotion recogni-
tion. On the other hand, Sym-cHDP also outperforms other
nonparametric topic models CI-HDP and Corr-HDP for ev-
ery scenario, which demonstrates that the flexible symmetric
correspondence mechanism can make Sym-cHDP work more
effectively on multimodal data modeling.

In addition, we also find that Sym-cHDP working on mul-
timodal data significantly outperforms HDP working on uni-
model data (visual data). This shows that the audio MFCC
features are very complementary to the deep features for such
video emotion recognition task, since they record the senti-
ment from different angles.

6. CONCLUSIONS

This paper presents a novel Bayesian nonparametric multi-
modal data modeling framework to learn the emotions from
videos. In this framework, we first draw the CNN-based deep
features and the audio MFCC features from each video. Then,
a symmetric correspondence hierarchical Dirichlet processes
(Sym-cHDP) is utilized to model the multimodal data, and
furthermore learn the latent emotional events between image
data and audio data. We finally demonstrate that our method
outperforms other baselines via comprehensive experimenta-
tions. Future work may focus on applying a supervised non-
parametric topic modeling approach, which can directly esti-
mate a emotion label without using an extra classifier.
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