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1 Introduction

Recently, deep learning has dramatically im-

proved the performance of voice conversion (VC)

systems through learning hierarchies of features op-

timized for the task at hand. However, deep learn-

ing models are restricted to problems with moder-

ate dimensions and sufficient data, so most deep

learning-based VC works focus on the conversion of

spectral features, which mainly affect the acoustics

of a voice, rather than on the conversion of fun-

damental frequency (F0) features, which mainly af-

fect the prosody of a voice, because F0 features ex-

tracted from STRAIGHT are low-dimensional fea-

tures that cannot be processed well by deep learning

models. As mentioned above, in VC tasks, the spec-

tral and F0 features can affect the voice ’s acous-

tic and prosodic features, respectively. The prosody

plays an important role in conveying various types

of non-linguistic information, such as the identity,

intention, attitude, and mood, which represent the

emotions of the speaker. However, previous studies

have shown that prosody conversion is affected by

both short-term and long-term dependencies, such

as the sequence of segments, syllables, and words

within an utterance, as well as lexical and syntactic

systems of a language. And it has been shown that

CWT can effectively model F0 in different temporal

scales and significantly improve the speech synthesis

performance [1]. For this reason, our earlier work [2]

decomposed the F0 into 30 temporal scales features

containing more specifics of different temporal scales

by CWT, and trained them with NN models.

In this paper, we propose a novel method that

systematically captures the F0 features of differ-

ent temporal scales by adaptive scales, which can

then represent different prosodic levels ranging from

micro-prosody to the sentence levels, but better

optimized than the earlier method [2]. Moreover,

to overcome the difficulty of a limited amount of

training data, we also propose an adaptive train-

ing model, which enables us to synthesize new data
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along the conversion function pre-trained by other

emotional data-sets. For instance, when perform-

ing the emotion conversion from an angry voice to

a neutral voice, we can process an additional angry

voice in advance by converting other data, such as

happy and sad voices, to an angry voice.

2 Adaptive Scales CWT

In our earlier work [2], we adopted CWT to de-

compose the F0 contour into 30 temporal scales be-

fore training the F0 features using NNs. The decom-

posed 30-dimensional features are linearly spaced

scales, each separated by one-third of an octave.

However, only the features that can represent the

utterance, phrase, word, syllable, and phone lev-

els are useful for training. Thus,in the current pa-

per, we apply an adaptive scales method to decom-

pose F0 features by wavelet transform before train-

ing them. As shown in the left part of Figure 1,

there are three main steps in calculating the adap-

tive scales. 1) Calculate the optimized duration for

each temporal level using the extra data. 2) We in-

vestigate the variability in each temporal level as a

rich source of information for studying the degree

of impact of every level in emotion conversion as a

function of influencing strength, and 3) calculate

adaptive scales with the influencing strength and

optimized duration of each temporal level obtained

in 1) and 2). The steps for processing details are

described below.

1) In order to calculate means and standard de-

viations of the duration of sentence, phrase, and

word levels, we first perform segmentation in the

extra neutral voice data. We denote by U [x∗] and

Γ[x∗] the mean and standard deviation of duration

of each temporal level x∗, x∗ ∈ X, and X is the set

{Xs, Xp, Xw, Xsyl, Xpho}, which represents the du-

ration of five temporal levels. According to [3], the

average duration of non-emphasized syllables was

found to be 50ms and 180ms, and that of phone lev-

els was 20ms to 40ms. Therefore, we set the mean
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Fig. 1 Illustration of calculating the adaptive scales CWT and using them to decompose the F0 features.

The left part of the figure shows the three main steps of calculating the adaptive scales, and the right part

shows the samples of CWT-F0 features decomposed by adaptive scales CWT.

of the syllable level U [Xsyl] to 115ms, the middle

values between 50ms and 180ms, and phone level

U [Xpho] to 30ms. The standard deviation Γ[Xsyl]

is set to 65ms and Γ[Xpho] is 10ms.

2) Next, we calculate each temporal level’s influ-

encing strength which can represent the proportion

of the influence among all the temporal levels in the

emotional VC. We first calculate the relative dis-

tance between the emotional voice and neutral voice

in each temporal level as shown below:

R(U [x∗]) =

√∑n
i=1(W

i
E(U [x∗])−W i

N (U [x∗]))2

n
(1)

where the mean U [x∗] of each level is obtained in
the first step, and n is the number of training data
in each emotional voice data set. W i

E(U [x∗]) and
W i

N (U [x∗]) represent the continuous wavelet trans-
form function of F0 using the emotional and neu-
tral input signal, in different temporal level x∗. The
transform functions are defined by

W i
E (U [x∗]) = τ−1/2

∫ ∞

−∞
FE0 (xi)ψ

(
x− U [x∗]

τ

)
dx

W i
N (U [x∗]) = τ−1/2

∫ ∞

−∞
FN0 (xi)ψ

(
x− U [x∗]

τ

)
dx

(2)

ψ (t) =
2√
3
π−1/4

(
1− t2

)
e−t2/2, (3)

where τ0 = 1ms, ψ is the Mexican hat wavelet,

FE0 (xi) and FN0 (xi) represent the emotional and

neutral input signal, respectively. Then, the

influencing strength of each temporal level can be

ranked by

PU [x∗] =
R(U [x∗])∑

x∗∈X R(U [x∗])
(4)

Then, we can draw the optimized number of

scales for CWT in each temporal level with the

influencing strength from a multinomial distribu-

tion:

λX ∼Multinomial(N,PU)

λx∗ ∈ λX = (λXs , λXp , λXw , λXsyl
, λXpho

)

PU [x∗] ∈ PU

PU = (PU [Xs], PU [Xp], PU [Xw], PU [Xsyl], PU [Xpho])

(5)

where N is the total number of scales, which can be

set in different values, vectors PU are made up of all

the influencing strengths, and λX represents the

number of scales in all the temporal levels. There-

fore, the λx∗ can represent the number of scales in

each temporal level.

3) The third step is using the influencing

strength and optimized duration to calculated the

adaptive scales of each temporal level. First, we use

the Gaussian function to separately calculate the
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probability densities of the duration in each tem-

poral level using

O[x∗] = N(O[x∗], U [x∗],Γ[x∗]) (6)

where O[x∗] represents the probability density of du-

ration in each temporal level. Then, we set a thresh-

old to draw the valid values x∗, when probability

density O[x∗] is over 50%. The optimized duration

can then be represented by

D(Ix∗) = min(x∗) +
max(x∗)−min(x∗)

λx∗
∗ Ix∗

Ix∗ = (0, ..., λx∗) (7)

where λx∗ represents the optimum number of scales

for CWT in each temporal level calculated in Eq. 5,

and x∗ is the valid value of duration in each tem-

poral level. Finally, the adaptive scales can then be

represented by

θIx∗ = log2(D(Ix∗)/τ0) (8)

After calculating the scales that can model prosody

at different temporal levels, we adopt CWT to de-

compose the F0 contour with these adaptive scales

and our F0 is represented by separate components

given by

WθIx∗ (f0)(t)=WθIx∗ (f0)(2
θIx∗ +1τ0, t) (θIx∗ +2.5)

−5/2

(9)

The original signal is approximately recovered by

f0 =

λx∗∑
Ix∗=0

∑
x∗∈X

WθIx∗ f0(t)(θIx∗ + 2.5)−5/2 + ϵ(t)

(10)

where ϵ(t) is the reconstruction error.

3 Training Model

The conversion function training of our proposed

method has two stages. The first stage is the MCC

conversion using the DBNs, the other is the conver-

sion of CWT-F0 using the NNs. In the first stage, we

apply the training model used in our earlier work [2]

that first transformed aligned spectral features of

source and target voices to 24-dimensional MCC fea-

tures. Then, we used these MCC features of the

source and target voice as the input-layer data and

output-layer data for the DBNs. Finally, we con-

nected them using NNs for deep training. In the

second stage, we used the high-dimension CWT-F0

features for prosody features training. To achieve

this, we transfer the parallel data consisting of the

aligned F0 features of the source and target voices

to CWT-F0 features by using the AS-CWT method.

Then we used the 4-layer NN models to train the

CWT-F0 features. Neural networks are trained on

a frame error (FE) minimization criterion and the

corresponding weights are adjusted to minimize the

error squares over the whole source-target, stereo

training data set. The learning problem is to find

an optimized mapping function GE→N that satisfies

argmin
GE→N

∥GE→N (XE)− YN∥2 (11)

where, XE represents the input CWT F0 features,

and YN is the target CWT F0 features. However, to

train such a regression model, a large corpus with

different emotions is required. For this paper’s scope

with only a limited amount of emotional voice data,

NNs may suffer from an insufficient amount of train-

ing data, leading to poor performance. To address

the problem, we propose a NNs model using the

other emotional data sets to synthesize new emo-

tional data as additional training samples for target

emotional voice conversion. The method can be for-

mulated as follows:

argmin
GN→A

∥GN→A(XN )− YA∥2

argmin
GS→A

∥GS→A(XS)− YA∥2

argmin
GH→A

∥GH→A(XH)− YA∥2

XR = [GN→A(XN ), GS→A(XS), GH→A(XH)]T

(12)

where YA represents the anger voice data set, and

XN , XS and XH represent the input neutral, sad,

and happy voice data sets, respectively. Thus,

GN→A, GS→A and GH→A represent the networks

that are trained for converting the other voice

datasets to an angry voice data set. XR represents

the synthesized new angry voice data. Then, we

concatenated XA with the synthesized angry voice

data XR in Eq. 12 to calculate the conversion func-

tionwith the goal of converting the angry voice to a

neutral voice as shown below:

argmin
GA→N

∥GA→N

(
XR

XA

)
− YN∥2 (13)
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Other emotional voice conversion can also be con-

ducted by the proposed method using pre-trained

conversion functions to synthesize new data as ad-

ditional training samples for target voice conversion.

Since there are sufficient neutral voice data, there is

no need to synthesize the neutral voice in the pro-

posed method.

4 Experiments

We used a database of emotional Japanese speech

constructed in a previous study. The waveforms

used were sampled at 16 kHz. Input and output

data had the same speaker but expressing different

emotions. We classified the six data sets into the

following: happy to neutral voices, angry to neutral

voices, and sad to neutral voices, as well as their in-

verse conversion from neutral voices to each emotion

voices. For each data set, 50 sentences were chosen

as training data and 10 sentences were chosen for

the VC evaluation.

To evaluate the proposed method, we compared

the results with several state-of-the-art methods

listed below.

• LG (M1): This system proposed by Nakashika

et al. converts spectral features using DBNs,

and converts the F0 features through the LG

method.

• NMF (M2): Using non-negative matrix fac-

torization (NMF) to convert five-scale CWT-F0

features.

• CWT (M3): This is our previous work [2] that

uses DBNs to convert spectral features while

using the NNs to convert the 30-scale CWT-F0

features.

• AS-CWT (M4 proposed method): This is

the proposed system that uses DBNs to con-

vert spectral features while using NNs to con-

vert the CWT-F0 features decomposed by AS-

CWT method.

4.1 Objective Experiment

To evaluate the F0 conversion, we used the

root-mean-square error (RMSE), A lower F0-RMSE

value indicates smaller predicting error. The av-

erage F0-RMSE results from emotional to neutral

pairs and their inverse conversion are reported in

Table 1 F0-RMSE results for different emotions.

A2N, S2N and H2N represent angry, sad and happy

voice to neutral voice, respectively. N2A, N2S and

N2H represent their inverse conversion

E2N N2E

A2N S2N H2N N2A N2S N2H

Source 76.8 73.7 100.4 76.8 73.7 100.4

M1 76.1 73.5 85.2 76.3 72.0 99.3

M2 69.4 66.9 74.3 70.4 62.3 75.2

M3 61.6 62.2 75.9 39.5 40.1 64.5

M4 51.2 64.1 64.4 37.8 35.9 62.1

Table 1. As shown in Table 1, the conventional lin-

ear conversion LG can affect the conversion of happy

to neutral, but only slightly affect the conversion of

angry voices and sad voices to neutral voices. The

NMF method, previously proposed CWT method,

and the new proposed AS-CWT method can affect

the conversion of all emotional voice datasets. In ad-

dition, the proposed method can obtain significant

improvement in F0 conversion as a whole.

5 Conclusions

In this paper, we propose the AS-CWT method

to systematically capture the F0 features of differ-

ent temporal scales. Meanwhile, we also use the

pre-trained conversion functions to synthesize new

emotional data as additional training samples for

target emotional voice conversion. A comparison

between the proposed method and the conventional

methods (logarithm Gaussian, NMF) shows that our

proposed model can effectively change the prosody

of the emotional voice.
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