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Abstract
An artificial neural network is one of the most important models
for training features of voice conversion (VC) tasks. Typically,
neural networks (NNs) are very effective in processing nonlin-
ear features, such as mel cepstral coefficients (MCC) which rep-
resent the spectrum features. However, a simple representation
for fundamental frequency (F0) is not enough for neural net-
works to deal with an emotional voice, because the time se-
quence of F0 for an emotional voice changes drastically. There-
fore, in this paper, we propose an effective method that uses
the continuous wavelet transform (CWT) to decompose F0 into
different temporal scales that can be well trained by NNs for
prosody modeling in emotional voice conversion. Meanwhile,
the proposed method uses deep belief networks (DBNs) to pre-
train the NNs that convert spectral features. By utilizing these
approaches, the proposed method can change the spectrum and
the prosody for an emotional voice at the same time, and was
able to outperform other state-of-the-art methods for emotional
voice conversion.
Index Terms: emotional voice conversion, continuous wavelet
transform, F0 features, neural networks, deep belief networks,

1. Introduction
Recently, the study of Voice Conversion (VC) has attracted wide
attention in the field of speech processing. This technology
can be widely applied in various application domains. For in-
stances, emotion conversion [1], speaking assistance [2], and
other applications [3] [4]. Therefore, the need for this type of
technology in various fields has continued to propel related re-
searches each year. Many statistical approaches have been pro-
posed for spectral conversion during the last decades [5] [6].
Among these approaches, a Gaussian Mixture Model (GMM)
is widely used, and a number of improvements have been pro-
posed [7] [8] for GMM-based voice conversion. Other VC
methods, such as approaches based on non-negative matrix fac-
torization (NMF) [9] [2] have also been proposed. The NMF
and GMM methods are based on linear functions. For perform-
ing voice conversion better, the VC technique needs to train
more complex nonlinear features such as Mel Cepstral Coef-
ficients (MCC) [10] which are widely used in automatic speech
and speaker recognition, some approaches construct non-linear
mapping relationships using neural networks (NNs) to train the
mapping dictionaries between source and target features [11], or
using deep belief networks (DBNs) to achieve non-linear deep
transformation [12]. The results have shown that these deep ar-
chitecture models can perform better than shallow conversion
in some complex voice features conversion.

However, most of the related works in respect to VC fo-
cus on the conversion of spectral features, rather than funda-
mental frequency (F0) conversion. The spectral features and F0
features obtained from STRAIGHT [13] can affect the voice’s
acoustic features and emotional features, respectively. F0 fea-
tures are one of the most important parameters for representing
emotional speech, because it can clearly describe the variation
of voice prosody from one pitch period to another. But F0 fea-
tures extracted from STRAIGHT are low-dimensional features
that cannot be processed well by deep models such as NMF
models or DBN models. Therefore, F0 features are usually con-
verted by logarithm Gaussian normalized transformation (LG)
[14] in these models. However, it has been proved that prosody
conversion is affected by both short term dependencies as well
as long term dependencies, such as the sequence of segments,
syllables, words within an utterance, lexical and syntactic sys-
tems of a language [15]. The LG-based method is insufficent
to convert the prosody effectively due to the constraints of their
linear models and low dimensional F0 features [16]. Since the
CWT can effectively model F0 in different temporal scales and
significantly improve the speech synthesis performance [17].
Ming et.al. [16] used CWT in F0 modeling within the NMF
model for emotional voice conversion and obtained a better re-
sult than the LG method in F0 conversion.

In this paper, inspired by deep learning models’ ability to
perform well in complex nonlinear feature conversion [12] and
CWT’s ability to improve F0 features conversion [16], we pro-
pose a novel method that uses NNs to train the CWT-F0 for
converting the prosody of the emotional voice. Different from
[16], we decompose the F0 into 30 temporal scales which con-
tain more specifics of different temporal scales and train them
by NNs which can perform better compared to the logarithm
Gaussian model and NMF-based model. Since the DBNs are
effective to spectral envelope conversion, for spectral features
conversion, we train the MCC features by using DBNs proposed
by Nakashika et.al. [12]. The reason we choose different mod-
els to separately convert the spectral features and F0 features
is that although the wavelet transform decomposed F0 features
to more complex features, they can be trained enough by NNs,
while the more complex spectral features need a deeper archi-
tecture.

In the rest of this paper, we describe features processing
about MCC and CWT in Sec. 2. The DBNs and NNs used in
our proposed method are introduced in Sec. 3. In Sec. 4, we
describe the framework of our proposed emotional voice con-
version system. Sec. 5 gives the detailed stages of process in
experimental evaluations, and conclusions are drawn in Sec. 6.
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2. Feature extraction and processing
To extract features from a speech signal, the STRAIGHT
is frequently used. Generally, the smoothing spectrum and
instantaneous-frequency-based F0 are derived as excitation fea-
tures for every 5ms from the STRAIGHT [13]. To have the
same number of frames, a dynamic time wraping method is used
to align the extracted features (spectrum and F0) of source voice
and target voice. Then, the aligned spectral features are trans-
lated into MCC. The F0 features produced by STRAIGHT are
one dimensional and discrete. It is difficult to model the varia-
tions of F0 in all temporal scales using linear models. Inspired
by the work in [16], before training the F0 features by NNs, we
adopted CWT to decompose the F0 contour into several tem-
poral scales that can be used to model different prosodic levels
ranging from micro-prosody to the sentence level. The steps for
processing details are as follows:
1) In order to explore the perceptual relevant information, F0
contour is transformed from linear scale to logarithmic semi-
tone scale, which is referred to as logF0. As shown in Fig. 1(A),
the logF0 is discrete. As the wavelet method is sensitive to the
gaps in the F0 contours, we need to fill in the unvoiced parts
in the logF0 with linear interpolation to reduce discontinuities
in voice boundaries. Finally, normalize the interpolated logF0
contour to zero mean and unit variance. An example of an in-
terpolated pitch contour is depicted in Fig. 1(B)
2) The continuous wavelet transform of F0 is defined by

W (τ, t) = τ−1/2

∫ ∞

−∞
f0 (x)ψ

(
x− t
τ

)
dx (1)

ψ (t) =
2√
3
π−1/4 (1− t2

)
e−t

2/2, (2)

where f0 (x) is the input signal and ψ is the Mexican hat mother
wavelet. We decompose the continuous logF0 with 30 discrete
scales, each one third octave apart. Our F0 is thus represented
by 30 separate components given by

Wi(f0)(t) =Wi(f0)(2
(i/3)+1τ0, t) ((i/3) + 2.5)

−5/2

, (3)

where i = 1,...,30 and τ0=5 ms. As shown in Fig. 2, the top
figure is the interpolated log-normalized F0 of the source voice.
And the second pan to sixth pan show several examples of sep-
arate components which can represent the utterance, phrase,
word, syllable and phone levels, respectively.

3. Training model
3.1. NNs

Neural networks (NNs) are trained on a frame error (FE) mini-
mization criterion and the corresponding weights are adjusted to
minimize the error squares over the whole source-target, stereo
training data set. As shown in Eq. 4, the error of mapping is
given by

ε =
∑

t

||yt −G(xt)||2, (4)

G(xt) denotes the NNs mapping of xt and is defined as:

G(xt) = (G1 ◦G2 ◦ · · · ◦GL) =
L⊙

l=1

G(l)(xt) (5)
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Figure 1: Log-normalized F0 (A) and interpolated log-
normalized F0 (B). The red curve: target F0; The blue curve:
source F0.

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−5

0

5

L
o

g
 F

0

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−50

0

50

i=
3

0

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−50

0

50

i=
2

4

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−20

−10

0

10

i=
1

8

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−10

0

10

i=
1

2

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
−5

0

5

i=
6

Figure 2: Interpolated log-normalized F0 and five wavelet trans-
forms (i=30, i=24, i=18, i=12, i=6)

Gl(xt) = σ(W lxt) (6)

Here,
⊙L

l=1 denotes composition of L functions. For instance,⊙2
l=1W

(l)(z) = σ(W (2)σ(W (1)(xt)). W (l) represents the
weight matrices of layer l in NNs. σ denotes a standard tanh
function which is defined as:

σ (x) = tanh (x) =
e2x − 1

e2x + 1
, (7)

As shown in the training model of Fig. 3, we use a 4-layer NN
model for prosody training. w1, w2 and w3 represent the weight
matrices of first, second and third layers of NN, respectively.
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Figure 3: Framework of the proposed method

3.2. DBNs

Deep belief networks (DBNs) have an architecture that stacks
multiple Restricted Boltzmann Machines (RBMs) which are
composed of a visible layer and a hidden layer with full, two-
way inter-layer connections but no intra-layer connections. As
an energy-based model, the energy of a configuration (v, h) is
defined as :

E (v, h) = −aT v − bTh− vTWh, (8)

where, W ∈ RI×J , a ∈ RI×1, and b ∈ RJ×1 denote the
weight parameter matrix between visible units and hidden units,
a bias vector of visible units, and a bias vector of hidden units,
respectively. The joint distribution over v and h is defined as:

P (v, h) =
1

Z
e−E(v,h). (9)

The RBM has the shape of a bipartite graph, with no intra-layer
connections. Consequently, the individual activation probabili-
ties are obtained via

P (hj = 1|v) = σ

(
bj +

m∑

i=1

wi,jvi

)
; (10)

P (vi = 1|h) = σ

(
ai +

n∑

j=1

wi,jhj

)
. (11)

In DBNs, σ denotes a standard sigmoid function, (σ (x) =
1/(1 + e−x)). For parameter estimation, RBMs are trained to
maximize the product of probabilities assigned to some training

set data. To calculate the weight parameter matrix, we use the
RBM log-likelihood gradient method as defined:

L (θ) =
1

N

N∑

n=1

logPθ
(
v(n)

)
− λ

N
‖W‖ . (12)

Here, Pθ
(
v(n)

)
is the probability of visible vectors in the inner

model with the model parameters θ = (W,a, b). To differen-
tiate the L (θ) via Eq. 13, we can obtain W when making the
L (θ) be the largest.

∂L (θ)

∂Wij
= EPdata [vihj ]− EPθ [vihj ]−

2λ

N
Wij . (13)

where, EPdata 〈· · ·〉 and EPθ 〈· · ·〉 represent averages of input
data and the inner model, respectively. As shown in the training
model of Fig. 3, our proposed method has two different DBNs
for source speech and target speech (DBNsource and DBNtar-
get). This is intented to capture the speaker-individuality in-
formation and connect them by the NNs. The numbers of each
node from input x to output y are [24 48 24] for DBNsource and
DBNtarget, respectively. And the connected NN is a 3-layers
model. The whole training process of the DBNs was conducted
with the following steps.
1) Train two DBNs for source and target speakers. In the train-
ing of DBNs, the hidden units computed as a conditional prob-
ability (P (h|v)) in Eq. 10 are fed to the following RBMs, and
trained layer-by-layer until the highest layer is reached.
2) After pre-training the two DBNs separately, we connect them
by the NNs. The weight parameters of NNs are estimated so as
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to minimize the error between the output and the target vectors.
3) Finally, the entire network (DBNsource, DBNtarget and
NNs) is fine-tuned by back-propagation using the MCC fea-
tures.

4. Framework of proposed method
Our proposed framework, as shown in Fig. 3, transforms both
the excitation and the filter features from the source voice to the
target voice. As described in Sec. 2, we extracted spectral fea-
tures and F0 features from both source voice and target voice
by the STRAIGHT and use DTW to align them. We then pro-
cess the aligned F0 features into CWT-F0 features for NNs and
transform the aligned spectral features into the MCC features,
respectively. The conversion function training of our proposed
method has two parts. One part is the conversion of CWT-F0 us-
ing the NNs, the other is the MCC conversion using the DBNs.

For prosody training, we use the 30-dimentional CWT-F0
features for emotional voice features training. To achieve this,
we transfered the parallel data which consist of the aligned F0
features of source and target voices to CWT-F0 features. Then
use the 4-layers NN models to train the CWT-F0 features. The
numbers of nodes from the input layer to output layer are [30
50 50 30]. For spectral features training, we transform aligned
spectral features of source and target voices to 24-dimentional
MCC features. We then used these MCC features of the source
and target voice as the input-layer data and output-layer data
for DBNs. Then we connect them by the NNs for deep training.
The conversion phase of Fig. 3 shows how our trained conver-
sion function can be applied. The source voice is processed into
spectral features and F0 featurs by the STRAIGHT, which are
then transformed to MCC and CWT-F0 features, respectively.
These features can then be fed into the conversion function to
convert the features. Finally, we convert them back to spectrum
and F0, and use these features to reconstruct the waveform with
STRAIGHT.

5. Experiments
5.1. Experimental Setup

To evaluate the proposed method, we compared the results with
several state-of-the-art methods as follows:

• DBNs+LG: This system proposed by Nakashika et al.
converts spectral features by DBNs and converts the F0
features by the logarithm Gaussian method [12], which
can be expressed with the following equation:

log (f0conv) = µtgt +
σtgt
σsrc

(log (f0src)− µsrc)
(14)

where µsrc and σsrc are the mean and variance of the
F0 in logarithm for the source speaker, µtgt and σtgt
are those for the target speaker. (f0src) is the source
speaker pitch and (f0conv) is the converted fundamen-
tal frequency for the target speaker.

• DBNs+NMF: Using the DBNs to convert spectral fea-
tures while using the non-negative matrix factorization
(NMF) to convert five-scales CWT-F0 features.

• DBNs+NNs (proposed method): This is the proposed
system that uses the DBNs to convert spectral features
while using the NN to convert the 30-scale CWT-F0 fea-
tures.

We used a database of emotional Japanese speech constructed
in [18]. And the waveforms used were sampled at 16 kHz. In-
put and output have the same speaker but different emotions.
We made the datasets as happy voices to neutral voices, angry
voices to neutral voices and sad voices to neutral voices. For
each dataset, 50 sentences were chosen as training data and 10
sentences were choosen for evaluation voice.

Table 1: MCD and F0-RMSE results for different emotions.
A2N, S2N and H2N represent the datasets angry to neutral
voice, sad to neutral voice and happy to neutral voice, respec-
tively.

MCD F0-RMSE
A2N S2N H2N A2N S2N H2N

Source 6.03 5.18 6.30 76.8 73.7 100.4
DBNs+LG 5.47 4.77 5.92 76.1 73.5 85.2
DBN+NMF 5.46 4.78 5.93 69.4 66.9 74.3
DBN+NN 5.47 4.77 5.93 61.6 64.2 75.9

Figure 4: Mel-cepstral distortion evaluation of spectral features
conversion

Figure 5: Root mean squared error evaluation of F0 features
conversion
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5.2. Objective Experiment

Mel cepstral distortion (MCD) was used for the objective eval-
uation of spectral conversion, which is defined as:

MCD = (10/ ln 10)

√√√√2
24∑

i=1

(mcti −mcci )2 (15)

where mcti and mcci represent the target and the converted mel-
cepstral, respectively.
To evaluate the F0 conversion, we used the Root Mean Squar
Error (RMSE):

RMSE =

√√√√ 1

N

N∑

i=1

((F0ti)− (F0ci ))
2 (16)

where F0ti and F0ci denote the target and the converted F0 fea-
tures, respectively. A lower MCD and F0-RMSE value indicate
smaller distortion or predicting error. Unlike the RMSE evalu-
ation function used in [16], which evaluated the F0 conversion
by calculating logarithmic scaled F0, we used original target F0
and converted F0 for calculating the RMSE values. Since our
RMSE function evaluates complete sentences that contain both
voiced and unvoiced F0 features instead of the voiced logarith-
mic scaled F0, the RMSE values will be high. For emotional
voices, the unvoiced features also include some emotional in-
formation. Therefore, we choose the F0 of complete sentences
for evaluation instead of the voiced logarithmic scaled F0.

The average MCD and F0-RMSE results over all evaluation
pairs are reported in Table 1. The MCD results are presented in
the left part of Table 1. Comparing DBNs with source, DBNs
decrease the the value of MCD. As shown in Fig. 4, among
DBN+LG, DBN+NMF and DBN+NN, MCD decreases or in-
creases slightly, it proves that the conversion of F0 does not af-
fect the spectral features conversion too much. The F0-RMSE
results are presented in the right part of Table 1. As shown in
Table 1 and Fig. 5, the conventional linear conversion logarithm
Gaussian can affect the conversion of happy voice to neutral, but
affect slightly on the conversion of angry voice and sad voice to
neutral voice. The NMF method and proposed method can both
affect the conversion of all emotional voice datasets, and the
proposed method can get a better conversion result as a whole.

Fig. 6 shows the example of source emotion F0, Fig. 7 and
Fig. 8 show the target F0 and converted F0, respectively. Here,
we can see that after converted by the proposed method, F0 is
much similar to the tareget neutral vocie.

5.3. Subjective Experiment

We conducted a subjective emotion evaluation by a mean opin-
ion score test. The opinion score was set to a five-point scale
(the emotion of sample voice sounded more similar to the target
speech and different from source speech, the larger point will be
given). In each test, 50 utterances (10 for source speech, 10 for
target speech and 30 for converted speech by each method) are
selected and 10 listeners are involved. Each subject listened to
source and target speech. Then the subject listened to the speech
converted by the three methods and give the point to them. As
shown in Table 2 and Fig. 5, the angry voice to neutral voice
and sad voice to neutral voice can obtain a better result than
the happy voice to neutral voice by the method DBN-NMF and
DBN-NN. But, the conventional Gaussian method is proved to
be poorly in conversion of angery voice to neutral voice, and

the DBN-NN(proposed method) obtained a better score than the
other two methods in each emotional voice conversion.
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Figure 6: Example of F0 spoken with source anger emotion
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Figure 7: Example of F0 spoken with target neutral emotion
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Figure 8: Example of converted F0

Table 2: MOS results for different emotions. A2N, S2N and
H2N represent the datasets angry to neutral voice, sad to neutral
voice and happy to neutral voice, respectively.

A2N S2N H2N
DBNs+LG 2.03 2.63 2.76
DBN+NMF 3.37 3.02 2.94
DBN+NN 3.57 3.59 3.40

Figure 9: MOS evaluation of emotional voice conversion
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6. Conclusions and future work
In this paper, we proposed a method using DBNs to train the
MCC features to construct mapping relationship of the spec-
tral envelopes, while using NNs to train the CWT-F0 features
which are conducted by the F0 features for prosody conver-
sion between source and target speakers. Comparison between
the proposed method and the conventional methods (logarithm
Gaussian, NMF) have shown that our proposed model can ef-
fectively change the acoustic and the prosody for the emotional
voice at the same time. In this paper, we only coverted the emo-
tional voices to neutral voices and the model needs to conduct
the parallel speech data which will limit the conversion only one
to one. In the future work, we will do experiments about neutral
to emotional voices conversion. Also, there are researches using
the raw waveforms for deep neural networks training [19] [20].
We will apply the new DBNs model which can straightly use
the raw waveform features. It will let the emotional voice con-
version model be widely used for practical applications in the
future.
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