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Abstract

In this paper, we propose an audio-visual speech recognition
system for a person with an articulation disorder resulting from
severe hearing loss. In the case of a person with this type of
articulation disorder, the speech style is quite different from
those of people without hearing loss that a speaker-independent
acoustic model for unimpaired persons is hardly useful for rec-
ognizing it. The audio-visual speech recognition system we
present in this paper is for a person with severe hearing loss
in noisy environments. Although feature integration is an im-
portant factor in multimodal speech recognition, it is difficult to
integrate efficiently because those features are different intrin-
sically. We propose a novel visual feature extraction approach
that connects the lip image to audio features efficiently, and the
use of convolutive bottleneck networks (CBNs) increases ro-
bustness with respect to speech fluctuations caused by hearing
loss. The effectiveness of this approach was confirmed through
word-recognition experiments in noisy environments, where the
CBN-based feature extraction method outperformed the con-
ventional methods.

Index Terms: multimodal, lip reading, deep-learning, assistive
technology

1. Introduction

In recent years, a number of assistive technologies using in-
formation processing have been proposed; for example, sign
language recognition using image recognition technology [1]
and text reading systems from natural scene images [2]. In this
study, we focused on communication assistive technology for a
physically unimpaired person to communicate a person with an
articulation disorder resulting from severe hearing loss.

Some people with hearing loss who have received speech
training or who lost their hearing after learning to speak can
communicate using spoken language. However, in the case of
automatic speech recognition (ASR), their speech style is so dif-
ferent from that of people without hearing loss that a speaker-
independent (audio-visual) ASR model for unimpaired persons
is hardly useful for recognizing such speech. Matsumasa et
al. [3] researched an ASR system for articulation disorders re-
sulting from cerebral palsy and reported the same problem.

The performance of speech recognition is generally de-
graded in a noisy environment. For people with hearing loss,
because they do not hear ambient sound, they cannot control
the volumes of their voices and the speaking style in a noisy en-
vironment, and it is difficult to recognize utterances using only
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the speech signal for us. Then, we use the lip image of speaker
to compensate for recognition accuracy. For people with hear-
ing problems, lip reading is one communication skill that can
help them communicate better. In the field of speech process-
ing, audio-visual speech recognition has been studied for robust
speech recognition under noisy environments [4, 5]. In this pa-
per, we propose an audio-visual speech recognition for articula-
tion disorders resulting from severe hearing loss.

We employ a bottleneck feature extraction method from
audio-visual features using convolutive bottleneck networks
(CBN), which stack multiple layers of various types (such as
a convolution layer, a subsampling layer, and a bottleneck
layer) [6] forming a deep network. Thanks to the convolution
and pooling operations, we can train the convolutional neural
network (CNN) robustly to deal with the small local fluctua-
tions of an input feature map. In some approaches using deep
learning, an output layer plays a classification role, and out-
put units are used as a feature vector for a recognition system,
where phone labels are used as a teaching signal for an output
layer. On the other hands, an approach based on CBN [7] uses
a bottleneck layer as a feature vector for a recognition system,
where the number of units is extremely small compared with
the adjacent layers, following the CNN layers. In the case of an
articulation disorder, the phone label estimated by forced align-
ment may not be correct. Therefore, the bottleneck layer is a
better feature than an output layer which is strongly influenced
by some wrong phone labels because it is expected that the bot-
tleneck layer can aggregate propagated information and extract
fundamental features included in an input map.

In the most multimodal speech recognition system, audio
and visual features are integrated by just concatenating these
features. Because the audio and visual features are intrinsi-
cally different, a gap between audio and visual feature spaces
may cause undesirable effects in speech recognition. Therefore,
we propose a novel visual feature extraction method that con-
verts the lip image into an audio feature in a covolutive network,
which has an affinity with an audio feature.

Experimental results confirmed that our bottleneck features
increase robustness for small local fluctuations that are caused
by the utterances of those who have a hearing loss. Moreover,
we confirmed that the visual feature extracted by our method
compensates for the difference between audio and visual spaces
in speech recognition.
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Figure 1: Flow of the feature extraction

2. RELATED WORKS

As one of the techniques used for robust speech recognition un-
der noisy environments, audio-visual speech recognition, which
uses lip dynamic visual information and audio information, has
been studied. In audio-visual speech recognition, there are
mainly three integration methods: early integration [8], which
connects the audio feature vector with the visual feature vector;
late integration [9], which weights the likelihood of the result
obtained by a separate process for audio and visual signals; and
synthetic integration [4], which calculates the product of output
probability in each state.

In audio-visual speech recognition, detecting face parts (for
example, eyes, mouth, nose, eyebrows, and outline of face) is
an important task. The detection of these points is referred to as
face alignment. In this paper, we employed a constrained local
model (CLM) [10]. A CLM is a subject-independent model that
is trained from a large number of face images.

In recent years, an ASR system has been applied as assis-
tive technology for people with articulation disorders. During
the last decades, an ASR system for a person with cerebral palsy
has been researched. In [3], robust feature extraction based on
principal component analysis (PCA) with more stable utterance
data was proposed. In [11], multiple acoustic frames (MAF)
was used as an acoustic dynamic feature to improve the recog-
nition rate of a person with an articulation disorder, especially
in speech recognition using dynamic features only.

Deep learning has had recent successes for acoustic model-
ing [12]. Deep neural networks (DNNSs) contain many layers of
nonlinear hidden units. The key idea is to use greedy layer-wise
training with restricted Boltzmann machines (RBMs) followed
by fine-tuning. Ngiam et al. [13] proposed multimodal DNNs
that learn features over audio and visual modalities. Mroueh
et al. [14] improved this method and proposed an architec-
ture considering the correlations between modalities. Ninomiya
et al. [5] investigated integration of bottleneck features using
multi-stream hidden Markov models (HMMs) for audio-visual
speech recognition.

In this paper, we employ a convolutional neural network
(CNN) [6]-based approach to extract robust features from audio
and visual features. The CNN is regarded as a successful tool
and has been widely used in recent years for various tasks, such
as image analysis [15, 16, 17] and spoken language [18], music
recognition [19].
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3. FEATURE EXTRACTION USING CBN
3.1. Flow of The Feature Extraction

Figure 1 shows the flow of feature extraction. First, we pre-
pare the input features for training a CBN from lip images and
speech signals uttered by a person with hearing loss. For the
audio signals, after calculating short-term mel spectra from the
signal, we obtain mel-maps by merging the mel spectra into a
2D feature with several frames, allowing overlaps.

The visual signals of the eyes, mouth, nose, eyebrows, and
outline of the face are aligned using the point distribution model
(PDM) and its model parameter is estimated by constrained lo-
cal model (CLM) and a lip image is extracted. The extracted
lip image is interpolated to fill the sampling rate gap between
visual features with respect to audio features. In this paper, We
adopted the spline interpolation to the lip images.

For the output units of the CBN, we use phoneme labels that
correspond to the input mel-map and lip images. Audio and
visual CBNs are separately trained, and the parameters of the
CBN are trained by back-propagation with stochastic gradient
descent, starting from random values. Following the training
of CBNs, the input mel-map and lip images are converted to
the bottleneck feature by using each CBN. Then these features
are concatenated, and used in the training of HMMs for speech
recognition.

In the test stage, we extract features using each CBN, which
tries to produce the appropriate phoneme labels in the output
layer. Again, note that we do not use the output (estimated) la-
bels for the following procedure, but we use the BN features
in the middle layer, where it is considered that information in
the input data is aggregated. Finally, extracted bottleneck au-
dio and visual features are simply concatenated and used as the
input features of HMMs to audio-visual speech recognition. In
our previous work [20], we evaluated the early and late integra-
tion for the similar system. Then, because the performances are
equivalent between two integrations, we empoy the early inte-
gration in this paper.

3.2. Convolutive Bottleneck Network

A CBN [21] consists of an input layer, a pair of a convolution
layer and a pooling layer, fully-connected Multi-Layer Percep-
trons (MLPs) with a bottleneck structure, and an output layer.
The MLP stacks some layers, and the number of units in a
middle layer is reduced as “bottleneck features”. The number
of units in each layer is discussed in the experimental section.
Since the bottleneck layer has reduced the number of units for
the adjacent layers, we can expect that each unit in the bottle-
neck layer aggregates information and behaves as a compact
feature descriptor that represents an input with linear discrim-
inant analysis (LDA) or PCA. In this paper, audio and visual
features are input to each CBN and extracted bottleneck fea-
tures are used for multimodal speech recognition.

4. PROPOSED VISUAL FEATURE
EXTRACTION NETWORK

We propose a novel visual feature extraction method that has an
affinity with the audio feature. Note that our proposed method
is motivated by the difference in the feature spaces between two
modalities. Figure 2 depicts the proposed visual CBN that con-
sists of two netwroks, where C, S, and M denote the convolu-
tional layer, subsampling layer, and MLPs, respectively.

First, we train a network from the input layter to M2 layter



in Figure 2. In this network, lip images are fed to the input
layter and segment acoustic features are used as the teaching
signal. This network has a roll to convert a lip image into an
acoustic feature. Next, we train a network from M2 layter to
the output layer in Figure 2. In this network, the mel-frequency
cepstral coefficients (MFCC) segment features are fed to the in-
put layter and phoneme labels are used as teaching signals. Fi-
nally, by coupling the above two networks, the whole network is
composed, that is our proposed visual CBN. Then we fine-tune
this network where lip images and phoneme labels are set for
input and output layers. By transforming the lip image into the
acoustic feature in the middle layer, it is expected that the gap
between the visual feature and the audio feature is compensated
for. In the evaluation step, we use this visual CBN to extract the
visual bottleneck features at the M4 layer.
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Figure 2: Proposed Visual CBN

5. Experiment
5.1. Experimental conditions

Our proposed method was evaluated on word recognition tasks.
We recorded utterances of one male person with hearing loss,
where the text is the same as the ATR Japanese speech database
A-set. We used 2,620 words as training data, and 216 words
as test data. The utterance signal was sampled at 16 kHz and
windowed with a 25-msec Hamming window every 5 msec.
For the acoustic-visual model, we used the monophone-HMMs
(54 phonemes) with 3 states and 6 mixtures of Gaussians.
The number of units of bottleneck features is 30. There-
fore, input features of HMM are 30-dimensional acoustic fea-
tures and 30-dimensional visual features. We compare our
audio-visual feature with conventional MFCC+A+AA (36-
dimensions) and MFCC+A+AA+ discrete cosine transform
(DCT) (66-dimensions). First, we compared our proposed
CBN-based visual features with DNN-based visual features in
lip reading. The numbers of units in each layer of the DNN are
set to 100, 30, 100, 54, and the input vector is a concatenated
lip image. Then, our proposed method and audio-visual fea-
tures are evaluated in noisy environments. White noise is added
to audio signals and its SNR is set to 20dB, 10dB, and 5dB.
Audio CBN and HMMs are trained by using the clean audio
feature.

Phoneme
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5.2. Architecture of CBN

As shown in Figure 2, we use deep networks, which consist of
a convolution layer, a pooling layer, and fully-connected MLPs.
For the input layer of audio CBN, we use a mel-map of sub-
sequent 13-frames with 39-dimensional-melspectrum, and the
frame shift is 5 msec. For the input layer of visual CBN, frontal
face videos are recorded at 60 fps. Luminance images are ex-
tracted from the image by using CLM and resized to 12 x 24
pixels. Finally, the images are up-sampled by spline interpola-
tion and input to the CBN.

Table 1 shows parameters used in experiments, and Figure 3
depicts architectures of evaluated CBNs. The audio-visual bot-
tleneck feature I (AV_BNF I) indicates that the audio and visual
features are extracted by each CBN that has the same architec-
ture (Arch 1 in Table 1). The audio-visual bottleneck feature 1I
(AV_BNF 1II), which was described in section 4, indicates that
the audio feature and the visual feature are extracted by Arch
1 and Arch 2 in Table 1, respectively. MFCCs of £2 frames
(subsequent 5-frames, 12-dimentions) are used as an acoustic
feature of a proposed visual CBN in Figure 2.

Table 1: Filter size, number of feature maps and number of
MLPs units for each architecture. The value for C indicates
the filter size of the convolution layer that has #1 maps. The
convolution layer is associated with the pooling layer. The value
of S means the pooling factor. The value for M indicates the
number of units for each layer in the MLP part.

Input C S #1 M
Arch1 | 39x13 | 4x2 | 3x3 | 13 108, 30, 108
Arch2 | 12x24 | 5x5 | 2x2 | 13 | 108, 60, 108, 30, 108

5.3. Experimental Results

Figure 4 shows the experimental results using the lip-based fea-
ture. As shown in the figure, the feature extracted by CNN ob-
tained a better result than the feature extracted by DNN. Our
proposed visual network slightly outperformed the simple CBN
structured by Arch 1 in Table 1.

We compared the audio-visual feature using our proposed
visual feature with four conventional features: MFCC+A+AA,
MFCC+A+AA+DCT, audio bottleneck features (BN_Audio),
and AV_BNF L. In the integration step, an audio feature and a
visual feature are combined into a single frame, and the com-
bined feature is used as an input feature for the HMMs. Figure 5
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Figure 4: Word recognition accuracy using HMMs trained by
the lip-based features
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Figure 3: Evaluation network architectures:

shows the word recognition accuracies in noisy environments.
The bottleneck audio feature shows the best results compared to
other features at the clean environment and SNR of 20dB. This
result shows that CBN features have a robustness to the small
local fluctuations in a time-mel-frequency map that is caused by
the articulation disordered speech. Our proposed audio-visual
feature outperforms the AV_BNF I in the clean environment and
SNR of 20dB, where the integrated features between the audio
and the proposed visual bottleneck features improved 3.3% and
3.8% compared with the AV_BNFs I, respectively. This is be-
cause our method compensates for the difference between audio
and visual spaces. However, at the SNRs of 10dB and 5dB, the
integrated feature using our proposed feature could not improve
the accuracy in comparison with that of the AV_BNF I. One of
the reasons is that a visual feature in our proposed method is
trained using clean acoustic features. Considering these results
of the clean and SNR 20dB environments, if the visual feature
were trained with noisy conditions, the proposed method might
achieve a better result compared with the method using the same
structured audio and visual CBN.
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Figure 5: Word recognition accuracy using HMMs
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AV _BNF (left), AV_BNF II (right)

6. Conclusions

In this paper, we proposed a visual feature, which has an affin-
ity to the audio feature, extracted from a CBN for articulation
disorders resulting from severe hearing loss. In recognition ex-
periments, we confirmed that our proposed audio-visual feature
obtained a better result than audio-visual features extracted by
the same structured audio and visual CBNs in clean or high-
SNR environments. However, because our proposed features
are trained by clean audio features, the recognition rate using
our proposed features are slightly lower than a method using
the same structured audio and visual CBNs in the low SNR. In
future work, we will further investigate a better audio and visual
feature integration method.
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