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Abstract
This paper proposes a discriminative learning method for Non-
negative Matrix Factorization (NMF)-based Voice Conversion
(VC). NMF-based VC has been researched because of the
natural-sounding voice it produces compared with conventional
Gaussian Mixture Model (GMM)-based VC. In conventional
NMF-based VC, parallel exemplars are used as the dictionary;
therefore, dictionary learning is not adopted. In order to en-
hance the conversion quality of NMF-based VC, we propose
Discriminative Graph-embedded Non-negative Matrix Factor-
ization (DGNMF). Parallel dictionaries of the source and tar-
get speakers are discriminatively estimated by using DGNMF
based on the phoneme labels of the training data. Experimental
results show that our proposed method can not only improve the
conversion quality but also reduce the computational times.

Index Terms: voice conversion, speech synthesis, NMF, spare
representation

1. Introduction
Non-negative Matrix Factorization (NMF) [1] is one of the most
popular sparse representation methods. The goal is to estimate
the basis matrix W and its weight matrix H from the input
observation V such that:

V ≈WH. (1)

In this paper, we refer to W as the “dictionary” and H as “activ-
ity”. NMF has been applied to hyperspectral imaging [2], topic
modeling [3], and the analysis of brain data [4].

The NMF-based method can be classified into two ap-
proaches: the dictionary-learning approach and exemplar-based
approach. In the dictionary-learning approach, the dictionary
and the activity are estimated simultaneously. This approach
has been widely applied in the field of audio signal process-
ing: for example single channel speech separation [5, 6] and
music transcription [7]. By estimating the dictionary from the
training data, reconstruction errors between V and WH tend
to be small. However, because not only the activity but also
the basis in the dictionary tend to be sparse, the formant struc-
ture of the spectral basis will suffer, and it degrades the per-
formance. On the other hand, in the exemplar-based approach,
only the activity becomes sparse because the dictionary is de-
termined using exemplars and the activity is estimated using
NMF. In the field of audio signal processing, Gemmeke et
al. [8] proposed noise-robust automatic speech recognition us-
ing exemplar-based NMF. The disadvantage of this approach is
the reconstruction error between V and WH, which becomes
larger than dictionary learning approach.

In recent years, exemplar-based NMF has been applied to
Voice Conversion (VC) [9, 10]. VC is a technique for convert-
ing specific information in speech while maintaining the other
information in the utterance. One of the most popular VC ap-
plications is speaker conversion [11]. In speaker conversion, a
source speaker’s voice individuality is changed to a specified
target speaker’s so that the input utterance sounds as though a
specified target speaker had spoken it. VC is also being used for
assistive technology [12], Text-To-Speech systems [13], spec-
trum restoring [14], and bandwidth extension for audio [15],
etc.

The Gaussian Mixture Model (GMM)-based approach is
widely used for VC because of its flexibility and good perfor-
mance [11]. Toda et al. [16] introduced dynamic features and
the Global Variance (GV) of the converted spectra over a time
sequence. Helander et al. [17] proposed transforms based on
Partial Least Squares (PLS), in order to prevent the over-fitting
problem associated with standard multivariate regression.

The NMF-based approach has two advantages over conven-
tional GMM-based VC methods. First, our approach results
in a natural-sounding converted voice [18]. In statistical ap-
proaches, low-dimensional spectral features (for example mel-
cepstrum) are used in order to avoid the “curse of dimension-
ality”. In our NMF-based approach, high-dimensional spec-
tra can be used because our approach is a non-statistical one.
Second, our NMF-based VC method is noise robust [19]. The
noise exemplars, which are extracted from the before- and after-
utterance sections in the observed signal, are used as the noise
dictionary, and the VC process is combined with NMF-based
noise reduction.

However, because the conventional NMF-based approach
employs exemplar-based NMF, the reconstruction error tends
to be large, and we assume it results in “muffling effect”.
In order to enhance the conversion quality of NMF-based
VC, we propose parallel dictionary learning using Discrim-
inative Graph-embedded Non-negative Matrix Factorization
(DGNMF). Source and target dictionaries are estimated under
parallel constraint for activity between the source and target-
training spectra. We introduce phoneme label-based discrimi-
nation and between-class constraint to Graph Regularized NMF
(GRNMF) [20] in order to conduct discriminative learning and
prevent over-fitting. Subjective evaluations show that our pro-
posed method effectively enhanced NMF-based VC and allevi-
ate the “muffling effect”.

The rest of this paper is organized as follows: In Section 2,
VC using exemplar-based NMF is described. In Section 3, our
proposed method is described. In Section 4, the summary of our
algorithm is described. In Section 5, the experimental data are
evaluated, and the final section is devoted to our conclusions.
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2. NMF-based Voice Conversion
2.1. Basic idea

Fig. 1 shows the basic approach of our exemplar-based VC,
where I, J, and K represent the numbers of dimensions,
frames, and bases, respectively. Our VC method needs two
dictionaries that are phonemically parallel. Ws represents a
source dictionary that consists of the source speaker’s exem-
plars and Wt represents a target dictionary that consists of the
target speaker’s exemplars. These two dictionaries consist of
the same words and are aligned with dynamic time warping
(DTW) just as conventional GMM-based VC is. Hence, these
dictionaries have the same number of bases. In this VC method,
all the frames from the parallel training data are used as exem-
plars.

Ws and Wt are determined using parallel exemplars, and
the source speaker’s activity Hs is estimated using NMF. The
cost function of NMF is defined as follows:

dKL(V
s,WsHs) + λ||Hs||1 s.t. Hs ≥ 0 (2)

In (2), the first term is the Kullback-Leibler (KL) divergence
between Vs and WsHs and the second term is the sparsity
constraint with the L1-norm regularization term that causes the
activity matrix to be sparse. λ represents the weight of the spar-
sity constraint. This function is minimized by iteratively updat-
ing the following equation.

Hs ← Hs. ∗ (WsT(Vs./(WsHs)))

./(WsT1(I×J) + λ1(K×J)) (3)

.∗, ./ and 1 denote element-wise multiplication, division and
all-one matrix, respectively. In this sense, the input spectra are
represented by a linear combination of a small number of bases
and the weights are estimated as activity.

This method assumes that when the source signal and the
target signal (which are the same words but spoken by differ-
ent speakers) are expressed with sparse representations of the
source dictionary and the target dictionary, respectively, the ob-
tained activity matrices are approximately equivalent. The esti-
mated source activity Hs is multiplied to the target dictionary

Wt and the target spectra V̂t are constructed.

V̂t = WtHs
(4)
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Figure 1: Basic approach of NMF-based voice conversion

2.2. Problems

In the case of exemplar-based NMF, the reconstruction error
between Vs and WsHs tends to be large (this point has been
proven in experiments). In order to reduce the reconstruction
error, a more compact dictionary needs to be estimated from the

exemplars. Compact dictionary can reduce the computational
times for NMF-based VC.

Moreover, in the NMF-based approach, input spectra are
estimated from the source dictionary, and the converted spec-
tra are constructed from the target dictionary. Fig. 2 shows an
example of the activity matrices estimated from a single paral-
lel Japanese word, which was uttered by a male and also by a
female. These words are aligned using DTW in advance, and
the parallel dictionaries, which consist of 250 bases, are used in
activity estimation. As shown in the figure, the estimated activ-
ities are different, although the input features and dictionaries
are parallel. We assume there are two reasons for this. First, we
assume that the alignment difference between the source and
the target dictionaries causes this effect. Although the paral-
lel dictionaries are aligned by DTW, there still seems to be a
mismatch of alignment. This mismatch degrades the perfor-
mance of exemplar-based VC [18]. Second, we assume that
the activity matrix contains not only phonetic information but
also speaker information. In [21], we proposed a framework for
dealing with this effect and improved the performance of NMF-
based VC. However, a large amount of parallel adaptive data is
needed when using this framework.
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Figure 2: Activity matrices for parallel utterances

3. Discriminative Parallel Dictionary
Learning for Voice Conversion

3.1. Discriminative Graph-embedded Non-negative Matrix
Factorization

Because conventional dictionary learning using NMF is con-
ducted on KL-divergence, it fails to discover the discriminative
structure of the training data. We introduce discriminative con-
straint using graphs that are estimated from phoneme-labeled
training data.

Adjacency matrices of a within-class scatter graph and a
between-class scatter graph of training data are defined as fol-
lows:

Aw
ij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1

⎛
⎜⎝

vi ∈ Nkw (vi) or vj ∈ Nkw (vj)

and

ci = cj

⎞
⎟⎠

0 (otherwise)

(5)

Ab
ij =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
1

⎛
⎜⎝

vi ∈ Nkb(vi) or vj ∈ Nkb(vj)

and

ci �= cj

⎞
⎟⎠

0 (otherwise)

(6)

where Nkw (vi) and Nkb(vi) denote the set of kw nearest
neighbors of vi in the within-class scatter graph and kb near-
est neighbors of vi in the between-class scatter graph. ci and cj
denote the phoneme label of vi and vj . Using adjacency matri-
ces, graph Laplacians of within-class scatter and between-class

293



scatter are defined as follows:

Lw = Dw −Aw
(7)

Lb = Db −Ab
(8)

where Dw and Db denote the diagonal column (or row) sum of
Aw and Ab.

Using graph Laplacians, the cost function of DGNMF is
defined as follows:

dKL(V,WH) +
φ

2
Tr(HTLwH)− ψ

2
Tr(HTLbH)

s.t. W ≥ 0,H ≥ 0 (9)

where Tr, φ, andψ denote the trace of matrix, weight of within-
class scatter, and between-class scatter, respectively. In (9), the
first term is the KL divergence between V and WH, the sec-
ond term is the within-class locality, and the third term is the
between-class locality.

This function is minimized by iteratively updating the fol-
lowing equation.

W ← W. ∗ ((V./(WH))HT)./(1(J×I)HT) (10)

H ← −β +
√
β2 + 4αγ

2α
(11)

α = ((φDw + ψAb)H)./H (12)

β = WT1(I×J) −H(φAw + ψDb) (13)

γ = H. ∗ (WT(V./(WH))) (14)

These equations are derived as the same manner as GNMF [20].
However, GNMF does not employ label-based discrimination
and between-class locality. Therefore, DGNMF and GNMF are
totally different approaches.

3.2. Parallel Dictionary Learning Using DGNMF

In order to construct a compact and discriminative dictionary,
a parallel dictionary between the source and target speakers is
estimated by parallel-constrained DGNMF. Fig. 3 shows the ap-
proach of our parallel dictionary learning. The objective func-
tion is represented as follows:

dKL(V
s,WsHs) + dKL(V

t,WtHt)

+
φ

2
Tr(HsTLswHs) +

φ

2
Tr(HtTLtwHt)

− ψ

2
Tr(HsTLsbHs)− ψ

2
Tr(HtTLtbHt)

+ λ||Hs||1 + λ||Ht||1 + ε

2
||Hs −Ht||2F

s.t. Ws ≥ 0,Hs ≥ 0,Wt ≥ 0,Ht ≥ 0 (15)

where Vs, Vt, Ws, Wt, Hs, and Ht denote the source exem-
plars, the target exemplars, the source dictionary, the target dic-
tionary, the source activity, and the target activity, respectively.
Lsw, Lsb, Ltw, and Ltb denote graph Laplacian of within-
class scatter of source exemplars, between-class scatter graph of
source exemplars, within-scatter graph of target exemplars, and
between-class scatter graph of target exemplars, respectively.
The source and target exemplars are aligned by DTW so that
they have the same number of frames. ε and λ represent the
parallel constraint weight and a the sparsity constraint weight.
In (15), the first term to the sixth term are extended from (9).
The seventh and eighth terms are sparsity constraint for Hs and

Ht, and the last term is the parallel constraint between Hs and
Ht.

This function is minimized by iteratively updating the fol-
lowing equation.

Ws ←Ws. ∗ ((Vs./(WsHs))HsT)./(1(J×I)HsT) (16)

Wt ←Wt. ∗ ((Vt./(WtHt))HtT)./(1(J×I)HtT) (17)

Hs ← −β
s +

√
βs2 + 4αsγs

2αs
(18)

αs = ((φDsw + ψAsb)Hs)./Hs + ε (19)

βs = WsT1(I×J) −Hs(φAsw + ψDsb)− εHt + λ
(20)

γs = Hs. ∗ (WsT(Vs./(WsHs))) (21)

Ht ← −β
t +

√
βt2 + 4αtγt

2αt
(22)

αt = ((φDtw + ψAtb)Ht)./Ht + ε (23)

βt = WtT1(I×J) −Ht(φAtw + ψDtb)− εHs + λ (24)

γt = Ht. ∗ (WtT(Vt./(WtHt))) (25)

where Asw and Asb denote adjacency matrices of within the
scatter graph and between the scatter of the source training data,
and Dsw and Dsb denote their diagonal column (or row) sums.
Atw, Atb, Dtw, and Dtb are those for the target training data.

After discriminative parallel dictionaries are estimated, the
input source speaker’s spectra are converted using the dictionar-
ies in the same manner described in Section 2.
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Figure 3: Parallel dictionary learning

4. Experimental Results
4.1. Experimental Conditions

The proposed VC technique was evaluated by comparing it with
the conventional exemplar-based method [22] and the conven-
tional GMM-based method in a speaker-conversion task using
clean speech data. The source speaker and target speaker were
one male and one female speaker, respectively, whose speech
is stored in the ATR Japanese speech database [23]. The sam-
pling rate was 12 kHz. Fifty sentences were used for training
and another 50 sentences were used for testing. In our proposed
method, ε, φ, ψ, kw, kb, λ are set to be 40, 1, 10, 1024, 8192,
and 0.1, respectively. The maximum number of NMF itera-
tions is set to 10 for dictionary learning and 300 for conversion.
Those parameters are chosen experimentally.

In the proposed and conventional GMM-based methods,
mel-cepstrum + Δ is used as a spectral feature. Its number of
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dimensions is 48. In the NMF-based method (including our pro-
posed method), the dimension number of the spectral feature
is 1,539. It consists of a 513-dimensional STRAIGHT spec-
trum [24] and its consecutive frames (the frame coming before
and the frame coming after). The number of Gaussian mixtures
in the GMM-based method was set to 64, which is experimen-
tally selected.

In this paper, F0 information is converted using a conven-
tional linear regression based on the mean and standard devia-
tion [16]. The other information, such as aperiodic components,
is synthesized without any conversion.

4.2. Results and Discussion

Objective tests were carried out using Mel-cepstrum distortion
(MelCD) [dB] as follows: [16]

MelCD = (10/ log 10)

√√√√2
24∑
d

(mcconv
d −mctard )2 (26)

wheremcconv
d andmctard denote the d-th dimension of the con-

verted and target mel-cepstra.
Table 1 shows the MelCD and computational times for each

method. Conv. denotes MelCD between the target and con-
verted features. Recon. denotes MelCD between the source and
reconstructed source features (mel-cepstra of WsHs in (2)),
which indicates the matrix factorization reconstruction eror.
The number in brackets denotes the number of parallel dictio-
nary bases. PDL denotes parallel dictionary learning (the same
condition as φ = 0, ψ = 0 in DGNMF).

In conventional NMF, the converted distortion using all
bases and 5,000 bases is not significant although their recon-
struction error is significantly small when we use all the bases.
We assume that the activity mismatch problem, which we dis-
cussed in Section 2.2, degrades the conversion performance of
NMF (all). The converted distortion between PDL (1,000) and
NMF (1,000) is not significant. Moreover, the reconstruction
error increased when we adapted PDL. On the other hand, our
proposed method decreased not only the converted distortion
but also the reconstruction error from NMF (1,000) and NMF
(5,000). These results shows that our proposed method ef-
fectively enhanced the performance of the conventional NMF-
based VC method.

The computational time is reduced as the number of bases
becomes small. We assume this point to be the advantage of the
dictionary-learning approach.

The subjective evaluation was conducted on “speech qual-
ity” and “similarity to the target speaker (individuality)”. For
the subjective evaluation, 25 sentences were evaluated by 10
Japanese speakers. For the evaluation on speech quality, we
performed a Mean Opinion Score (MOS) test [25]. The opinion
score was set to a 5-point scale (5: excellent, 4: good, 3: fair,
2: poor, 1: bad). For the similarity evaluation, a XAB test was
carried out. In the XAB test, each subject listened to the voice
of the target speaker. Then the subject listened to the voice con-
verted by the two methods and selected which sample sounded
most similar to the target speaker’s voice. In NMF-based VC
(including our proposed method), the number of bases is set at
5,000.

Fig. 4 shows the results of the subjective evaluation on
speech quality. The MOS of our proposed method is better than
that of the conventional NMF-based method and the GMM-
based method. (The result is confirmed with the p-value test
result of 0.05.) These result shows that our proposed method

effectively alleviate the “muffling effect” in the NMF-based VC
method. The difference in the results between the NMF-based
method and the GMM-based method were not significant. We
assume this is because our proposed method is significantly bet-
ter than the other two methods. For this reason, the difference
in MOS between NMF-based VC and GMM-based VC became
relatively insignificant.

Fig. 5 shows the results of the subjective evaluation on in-
dividuality. The difference between our proposed method and
the conventional NMF-based method is significant in the p-
value test result of in 0.05. This result indicates that our pro-
posed method enhanced the conversion quality of the NMF-
based method. The difference between our proposed method
and the conventional GMM-based method is not significant.

Table 1: MelCD and computational times of each method

Conv. [dB] Recon. [dB] times [s]

GMM 2.96 - 2
NMF (all) 3.05 1.37 890
NMF (10,000) 3.11 1.59 680
NMF (5,000) 3.05 1.56 310
NMF (1,000) 3.11 1.59 71
PDL (1,000) 3.11 1.85 71
DGNMF (1,000) 3.08 1.09 71
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Figure 4: MOS test on speech quality
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Figure 5: Preference score on individuality

5. Conclusions
In order to enhance the conversion performance of conventional
exemplar-based VC using NMF, we proposed a dictionary-
learning method using parallel constraint DGNMF. Our pro-
posed DGNMF introduced phoneme-labeled discriminative
learning on GNMF [20] and prevented over-fitting, which of-
ten occurs in dictionary-learning NMF. The parallel dictionary
is estimated by using parallel-constraint DGNMF, and it en-
hanced the naturalness of the converted voice. As a result of
dictionary learning, the computational times of the NMF-based
VC method are also reduced. For our future work, we will adopt
this method to NMF-based many-to-many VC [26]. We also as-
sume our method can easily be adapted to hyperspectral imag-
ing [2] or topic modeling [3].
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