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1 Introduction

Recently, the study of Voice Conversion (VC)

is being widely attracted attention in the field of

speech processing. This technology can be widely

applied in various application domains. For in-

stances, speech enhancement, emotion conversion,

speaking assistance , and other applications [1] are

related to VC. Therefore, the need for this type of

technology in various fields has continued to propel

related research forward each year. Many statisti-

cal approaches have been proposed for spectral con-

version during the last. Among these approaches,

a Gaussian Mixture Model (GMM) is widely used.

However, the features trained by GMM are usually

low-dimensional features which may lost some im-

portant spectral details during making the speech

spectra. The high-dimensional features, such as Mel

Frequency Cepstral Coefficents MFCCs which are

widely used in automatic speech and speaker recog-

nition, are not compatible with GMM. There are

also some approaches to construct non-linear map-

ping relationships, such as using artificial neural net-

works (ANNs) to train the mapping dictionaries be-

tween source and target features, using deep belief

networks (DBNs) to achieve non-linear deep trans-

formation [2]. These models improve the conversion

of spectrum features. Nevertheless, most of the re-

lated works in respect to VC focus on the conver-

sion of spectrum features, yet the seldom of those

focus on F0 conversion, because F0 cannot be pro-

cessed by a high-dimensional model neural networks

(NNs) well. But F0 is one of the most important pa-

rameters for representing emotional speech.For emo-

tional voice conversion, some prosody features, such

as pitch variables and speaking rate have already

been analyzed. There are also some works using a

GMM-based VC technique to change the emotional

voice [3]. As above-mentioned, recently acoustic

voice conversion usually uses the non-linear suitable

models (NNs, CRBMs, DBNs, RTDBNs) to convert

the spectral features, it is difficult to use the GMM

to deal with F0 made by these frameworks. To solve

these problems, we proposed a new approach.
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In this paper, we focus on the F0 features con-

version and transformation of the spectrum fea-

tures. We propose a novel method that uses the

deep neural networks (DBNs) to train MFCC fea-

tures for constructing the mapping relationship of

spectral envelopes between source and target speak-

ers. Then, adopt the neural networks (NNs) to train

the normalized-segment-F0 features (NSF0) for con-

verting the prosody of the emotional voice. Since

the deep brief networks are effective to spectral en-

velopes converting, in the proposed model, we train

the MFCC features by using the model combined

with two different DBNs and concatenating NNs

proposed by Nakashika [2]. For the prosody conver-

sion, we use the F0 features. Because the F0 features

extracted from the STRAIGHT are one-dimension

features, which are not suitable for the NNs. Hence,

in this study, we propose the normalized-segment-

F0 (NSF0) features to transform the one-dimension

F0 features into multiple-dimensions features. By

so doing, the NNs can robustly process prosody sig-

nals that is presented on F0 features so that the

proposed method can obtain high-quality emotional

conversion results, which form the main contribu-

tion of this paper.

In the remainder of this paper, we describe the

proposed method in Sec. 2. Sec. 3 gives the detailed

stages of process in experimental evaluations and

conclusions are drawn in Sec. 4

2 PROPOSED METHOD

The proposed model consists of two parts. One

part is the transformation of spectral features us-

ing the DBNs, the other is the F0 conversion using

the NNs. The emotional voice conversion framework

transforms both the excitation and the filter features

from the source voice to the target voice is shown in

Fig. 1. In this section, we briefly review the process

based on STRAIGHT for extracting features from

the source voice signal and the target voice signal,

while we introduce the spectral conversion part and

F0 conversion part.
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Fig. 1 The emotional voice conversion framework.

In the framework Spec s and Spec t mean the spec-

tral envelopes of source and target voice obtained

from the STRAIGHT . F0s and F0t are the basic

frequency of source and target speech. W s
spec ,W

t
spec

, W s
F0 and W t

F0 are dictionaries of source spectrum,

target spectrum , source F0 and target F0, respec-

tively.

2.1 Feature extraction

To extract features from a speech signal,

the STRAIGHT model speech is frequently

adopted. Generally, the pitch-adaptive-time-

frequency smoothing spectrum and instantaneous-

frequency-based F0 are derived as excitation fea-

tures for every 5 ms [4] from the STRAIGHT. As

shown in Fig. 1, the spectral features are translated

into MFCCs. To have the same number of frames,

a Dynamic Time Wrapping (DTW) method is used

to align the extracted features (MFCC and F0) of

source and target speeches. Finally, the aligned fea-

tures that have been processed by Dynamic Pro-

gramming are saved as the parallel data.

2.2 Spectral features conversion

In this section, we will convert the MFCCs by

DNNs model [2] .

In this study, we use the 24-dimentional MFCC

features for spectral training. As shown in Fig. 1,

we transfer the parallel data which concludes the

aligned spectral features of source and target voices

to MFCC features. Meanwhile, we respectively use

the MFCC features of the source and target voice

as the input-layer data and output-layer data for

DBNs. Fig. 2 shows the architecture of the DBNs

convert spectral features, which indicates two dif-

ferent DBNs for source speech and target speech

24 2424 24

48 48

NNs

DBNsou DBNtar

Fig. 2 DBNs model

(DBNsou and DBNtar) so as to capture the speaker-

individuality information and connect them by the

NNs. The numbers of each node from input x to

output y in Fig. 2 were [24 48 24 ] for DBNsou and

DBNtar. XN×D and YN×D represent N examples

of D-dimensional source feature and target feature

training vectors. XN×D and YN×D are defined in

Eq. 1, where D=24.

XN×D = [x1, ..., xN ] , x = [x1, ..., xD]T

YN×D = [y1, ..., yN ] , y = [y1, ..., yD]T .
(1)

2.3 F0 features conversion

For prosody conversion, F0 features are usually

adopted, and while it needs to be transformed. Rel-

ative methods used a logarithm Gaussian normal-

ized transformation to transform the F0 from the

source speaker to the target speaker as indicated in

the Eq. 2 below.

log (f0conv) = µtgt +
σtgt
σsrc

(log (f0src)− µsrc) (2)

As mentioned in the introduction section, non-linear

conversion models are more compatible with the

complex human emotional speeches. We use the

NN models to train the F0 features in our pro-

posed methods. The F0 features conducted from

STRAIGHT are one-dimensional features and dis-

crete. Before training the F0 features by NNs, we

need to transform F0 features into high-dimension

data. To process the high-dimensional features, we

adopt continuous wavelet transform (CWT)to de-

compose the F0 contour into several temporal scales

that can be used to model different prosodic levels

ranging from micro-prosody to the sentence level [5].

Then,transform the decomposed features into the

segment-level features. Detail processing are the fol-

lowing steps.
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Fig. 3 log-normalized F0 (top) and interpolated

log-normalized F0 (bottom). The red curve: target

F0; The blue curve: source F0.

1)In order to explore the perceptual relevant in-

formation, the linear scale F0 contour is transformed

to the logarithmic semitone scale. As shown in

Fig.3, the log-normalized F0 is discrete. The wavelet

method is sensitive to the gaps in the F0 contour,

so we need to add the unvoiced parts to the logf0

with linear interpolation to reduce discontinuities in

voicing boundaries. In addition, to alleviate edge

artifacts, constant f0 was added prior to and after

the utterance. The pre-utterance f0 value was set to

the mean f0 value calculated over logf0 ; the post-

utterance f0 was set to the minimum of logf0. Fi-

nally, the interpolated logf0 contour is normalized

to zero mean and unit variance. An example of an

interpolated pitch contour is depicted in the bottom

pan of Fig.3.

2)The continuous wavelet transform of f0 is de-

fined by

W (τ, t) = τ−1/2

∫

∞

−∞

f0 (x)ψ

(

x− t

τ

)

dx (3)

ψ (t) =
2
√
3
π−1/4

(

1− t2
)

e−t2/2, (4)

where f0 (x) is the input signal and (ψ) is the Mex-

ican hat mother wavelet. we decompose the continu-

ous logf0 at 10 discrete scales, each one octave apart.

Then f0 is represented by 10 separate components

given by

　Wi(f0)(t) = Wi(f0)(2
i+1τ0, t) (i+ 2.5)

−5/2

, (5)
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Fig. 4 Interpolated log-normalized F0 and five

wavelet transforms(i=2, i=4, i=6, i=8, i=10)

where i = 1,...,10 and τ0=5 ms. As shown in

Fig.4,the first pan above is the interpolated log-

normalized F0 of the source voice. And the second

pan to sixth pan show the separate components of

i=10, i=8, i=6, i=4, i=2 which can represent the

utterance, phrase, word, syllable, phone levels re-

spectively.

The original signal can be approximately recon-

structed by the following reconstruction formula:

　 f0(t) =
10
∑

1

Wi (f0) (t) (i+ 2.5)−5/2 (6)

3) Transform the processed 10-dimensions fea-

tures to the segment-level features . We form the

segment-level feature vector by stacking features in

the neighboring frames as:

XN×w = [x1, ..., xN ]T ,

x (m) = [z (m− w) , ..., z (m) , ..., z (m+ w)]T
(7)

where w is the window size on each side. Eq. 7

represents N examples of w-dimensional source fea-

tures. In the proposed model, we set the w = 3 that

the 10-dimensional normalized F0 features made up

by the 10 separate components can be transformed

to the 30-dimensional normalized-segment-F0 fea-

tures(NSF0). To guarantee the coordination be-

tween the initial source and conversion signals, we

adopt the same approach for the target features

transformation.After transforming F0 features to

the NSF0 features, we converted the 30-dimentional

NSF0 features by NNs. we used the 4-layers NN

models to train the NSF0 features. The numbers of

nodes from input layer x to output layer are [30 50

50 30].
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3 Experiments

3.1 Database

We used a database of emotional Japanese speech

constructed in [6]. From this database, we se-

lected the angry voices, happy voices and sad voices

of speaker (FUM) for the source, and the neutral

voices of speaker (FON) for target. For each emo-

tional voice, 50 sentences were chosen as training

data. We made the datasets as happy voices to neu-

tral voices, angry voices to neutral voices and sad

voices to neutral voices.

3.2 Result and discussion

Mel Cepstral Distortion (MCD) was used for the

objective evaluation of spectral conversion. For

comparison,we use the NN model, the RTRBM

model and the DBNs model to convert spectral fea-

tures respectively. As shown in the Fig 5, For emo-

tional voice conversion DBNs model can convert the

spectral features better than the NNs, and no sig-

nificant difference with the RTRBMs. Although our

training datasets are all from the FUM to FUN and

the content of the sentences are the same. We can

also see that the MCD evaluations from different

emotional voices conversion to the neutral voice are

a bit different. The result confirms that different

emotions in the same speech can influence the spec-

tral conversion and DNBs models proved to be the

fast and effective method in the spectral conversion

of emotional voice.

For evaluating the F0 conversion, we used the

Root Mean Squar Error (RMSE).We used the Gaus-

sian normalized transfromation method and pro-

posed method to convert the F0 features for compar-

ison. Fig.6 shows that our proposed method obtains

a better result than the traditional Gaussian nor-

malized transformation method in the all datasets.

(angry to neural, happy to neural, sad to neural.)

4 Conclusions

In this paper, we proposed a method using DBNs

to train the MFCC features to construct mapping

relationship of the spectral envelopes between source

and target speakers, using NNs to train the NSF0

features which are conducted by the F0 features for

prosody conversion. Comparison between the pro-

posed method and the past methods (NNs, GMM)

has shown that our proposed model can effectively
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Fig. 5 Mel-cepstral disortion evaluation of spectral

features conversion

!

"!

#!

$!

%!

&!!

'()*+,-./01*233,*4 5+(5(367088

*4)+90-(0462+*'

.*5590-(0462+*'

3*70-(0462+*'

Fig. 6 Root mean squared error evaluation of F0

features conversion

change the acoustic voice and the prosody for the

emotional voice at the same time.
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