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ABSTRACT

Voice conversion (VC) is being widely researched in the field of
speech processing because of increased interest in using such
processing in applications such as personalized Text-To-Speech
systems. A VC method using Non-negative Matrix Factorization
(NMF) has been researched because of its natural sounding voice,
however, huge memory usage and high computational times have
been reported as problems. We present in this paper a new VC
method using Semi-Non-negative Matrix Factorization (Semi-NMF)
using the Alternating Direction Method of Multipliers (ADMM) in
order to tackle the problems associated with NMF-based VC. Dictio-
nary learning using Semi-NMF can create a compact dictionary, and
ADMM enables faster convergence than conventional Semi-NMF.
Experimental results show that our proposed method is 76 times
faster than conventional NMF, and its conversion quality is almost
the same as that of the conventional method.

Index Terms— NMF, ADMM, Voice Conversion, Speech Syn-
thesis, Sparse Representation

1. INTRODUCTION

Non-negative Matrix Factorization (NMF) [1] is one of the most
popular sparse representation methods. The goal is to simultane-
ously estimate the basis matrix W and the activity H from the input
observation V such that:

V ≈WH. (1)

NMF has been applied to hyperspectral imaging [2], topic model-
ing [3], and the analysis of brain data [4].

In the field of audio signal processing, NMF has been applied to
single channel speech separation [5, 6] and music transcription [7].
Some approaches using NMF employ an exemplar-based sparse
representation method, which determines the dictionary using exem-
plars and only estimates the activity. Gemmeke et al. [8] proposed
noise robust automatic speech recognition using exemplar-based
NMF.

In recent years, exemplar-based NMF has been applied to Voice
Conversion (VC) [9, 10]. VC is a technique for converting specific
information in speech while maintaining the other information in
the utterance. One of the most popular VC applications is speaker
conversion [11]. In speaker conversion, a source speaker’s voice in-
dividuality is changed to a specified target speaker’s so that the input
utterance sounds as though a specified target speaker had spoken it.
VC is also being used for assistive technology [12], Text-To-Speech
systems [13], spectrum restoring [14], and bandwidth extension for
audio [15], etc.

The Gaussian Mixture Model (GMM)-based approach is widely
used for VC because of its flexibility and good performance [11].

Toda et al. [16] introduced dynamic features and the Global Variance
(GV) of the converted spectra over a time sequence. Helander et
al. [17] proposed transforms based on Partial Least Squares (PLS),
in order to prevent the over-fitting problem associated with standard
multivariate regression.

The NMF-based approach has two advantages over conven-
tional GMM-based VC methods. First, our approach results in a
natural-sounding converted voice [18]. Over-smoothing and over-
fitting problems have been reported [17] in statistical approaches
because of statistical averaging and the large number of parameters.
Because our approach is a non-statistical one, it should avoid the
over-fitting problem. Second, our exemplar-based VC method is
noise robust [19]. The noise exemplars, which are extracted from
the before- and after-utterance sections in the observed signal, are
used as the noise dictionary, and the VC process is combined with
NMF-based noise reduction.

However, NMF-based VC also suffers from a problem with high
computational times. There are three major reasons:

1. Using high-dimensional spectra: Because of the non-
negativity constraint, the NMF-based VC method cannot
use mel-cepstrum or other low-dimensional features, which
include a negative value.

2. Large number of bases: The NMF-based VC method uses
all the spectra of the training data; therefore, the number of
bases in the dictionary is huge.

3. Poor optimization method: NMF-based VC method em-
ploys multiplicative updates using the Majorization Mini-
mization (MM) algorithm.

This paper tackles the problems using the following tactics:

1. Using Semi-Non-negative Matrix Factorization (Semi-
NMF), which relaxes the non-negativity constraint in the
dictionary and makes the use of mel-cepstrum possible.

2. Dictionary learning: Parallel dictionaries are estimated by
using Semi-NMF, resulting in a smaller number of the bases
in the dictionary.

3. Using the Alternating Direction Method of Multipliers
(ADMM) [20], which provides fast convergence to Semi-
NMF.

Semi-NMF using the MM algorithm has been proposed in [21], but
it has never been applied to VC as far as we know. Also, NMF using
ADMM has been proposed in [22, 23], and we have expanded it to
Semi-NMF in this paper.

The rest of this paper is organized as follows: In Section 2, two
major prior works and their problems are described. In Section 3,
our proposed method is described. In Section 4, the summary of
our algorithm is described. In Section 5, the experimental data are
evaluated, and the final section is devoted to our conclusions.
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2. PRIOR WORKS

2.1. NMF-based VC

2.1.1. Basic idea

Fig. 1 shows the basic approach of our exemplar-based VC, where
I, J, and K represent the numbers of dimensions, frames, and bases,
respectively. Our VC method needs two dictionaries that are phone-
mically parallel. Ws represents a source dictionary that consists
of the source speaker’s exemplars and Wt represents a target dic-
tionary that consists of the target speaker’s exemplars. These two
dictionaries consist of the same words and are aligned with dy-
namic time warping (DTW) just as conventional GMM-based VC
is. Hence, these dictionaries have the same number of bases. In this
VC method, all the frames from parallel training data are used as
exemplars.

Ws and Wt are determined using parallel exemplars, and the
source speaker’s activity Hs is estimated by using NMF. The cost
function of NMF is defined as follows:

dKL(V
s,WsHs) + λ||Hs||1 s.t. Ws ≥ 0,Hs ≥ 0 (2)

In (2), the first term is the Kullback-Leibler (KL) divergence be-
tween Vs and WsHs and the second term is the sparsity constraint
with the L1-norm regularization term that causes the activity matrix
to be sparse. λ represents the weight of the sparsity constraint. This
function is minimized by iteratively updating the following equation.

Hs ← Hs. ∗ (WsT(Vs./(WsHs)))

./(WsT1I×J + λ1K×J) (3)

.∗, ./ and 1 denote element-wise multiplication, division and all-one
matrix, respectively. In this sense, the input spectra are represented
by a linear combination of a small number of bases and the weights
are estimated as activity.

This method assumes that when the source signal and the target
signal (which are the same words but spoken by different speakers)
are expressed with sparse representations of the source dictionary
and the target dictionary, respectively, the obtained activity matrices
are approximately equivalent. The estimated source activity Hs is
multiplied to the target dictionary Wt and the target spectra V̂t is
constructed.
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Fig. 1. Basic approach of NMF-based voice conversion

2.1.2. Problems

Because of the non-negative constraint in NMF, the usable features
are restricted to the linear-spectrum, and we cannot use ∆ or ∆∆

features. In [18], we also used 513-demensional spectra and the con-
secutive frames. For this reason, the memory usage of this method
is huge.

Also, in the NMF-based approach, the parallel dictionary con-
sists of the parallel training data themselves. Activity is estimated
from a dictionary that consists of a large number of bases and re-
quires long running times. From these points of view, the NMF-
based method is not applicable for practical use.

Moreover, in the NMF-based approach, input spectra are es-
timated from the source dictionary, and the converted spectra are
constructed from the target dictionary. Fig. 2 shows an example of
the activity matrices estimated from a single parallel Japanese word,
where one is uttered by a male and the other by a female. These
words are aligned by using DTW in advance, and the parallel dictio-
naries, which consist of 250 bases, are used in activity estimation.
As shown in the figure, estimated activities are different, although
the input features and dictionaries are parallel. We assume there are
two reasons for this. First, we assume that the alignment difference
between the source and the target dictionaries causes this effect. Al-
though the parallel dictionaries are aligned by DTW, there still seems
to be a mismatch of alignment. This mismatch degrades the perfor-
mance of exemplar-based VC [18]. Second, we assume that the ac-
tivity matrix contains not only phonetic information but also speaker
information. In [24], we proposed a framework for solving this ef-
fect and improved the performance of NMF-based VC. However,
a large amount of parallel adaptive data is needed when using this
framework.
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Fig. 2. Activity matrices for parallel utterances

2.2. Semi-NMF Using the Majorization Minimization Algo-
rithm

2.2.1. Formulation

The cost function of Semi-NMF is defined as follows:

dF (V,WH) + λ||H||1 s.t. H ≥ 0 (4)

In (4), the first term is the Frobenius norm between V and WH,
and the second term is the sparsity constraint with the L1-norm reg-
ularization term that causes the activity matrix to be sparse. λ rep-
resents a weight of sparsity constraint. Because we relaxed the non-
negativity constraint in W, the cost function of Semi-NMF is re-
stricted to the Frobenius norm or Euclidian distance. This function
is minimized by iteratively updating the following equation;

H ← (−λHT + (HT. ∗
√

λ2 + 16(A. ∗B))) (5)
./(4A)

AT = (VTW)− + (HT(WTW)+) (6)

BT = (VTW)+ + (HT(WTW)−) (7)
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where we separate the positive and negative parts of matrix X as
X+ = (|X|+X)/2,X− = (|X| −X)/2.

2.2.2. The problem

Semi-NMF can decompose negative values. Therefore, we can use
mel-cepstrum or ∆ parameters. This function will decrease the
memory usage compared to NMF. However, in the updating equa-
tion (7), there is a term that includes WTW. If we use a parallel
dictionary, which consists of the parallel training data themselves, it
requires a huge memory and a large number of computations. There-
fore, we need a dictionary learning scheme for a Semi-NMF based
VC method. Moreover, this Semi-NMF using the MM algorithm
has slow convergence.

3. VOICE CONVERSION USING SEMI-NON-NEGATIVE
MATRIX FACTORIZATION

3.1. Basic Idea

In order to solve the problems mentioned in the above section, we
propose a new VC method using Semi-NMF based on ADMM.
First, the source and target dictionaries are estimated by using
parallel-constrained Semi-NMF. This parallel-constraint solves the
activity gap problem that occurred in the conventional NMF-based
VC method. Moreover, estimating a compact dictionary with this
scheme can reduce the memory usage and computational times.

Input source spectra are decomposed into a linear combination
from the basis from the estimated dictionary by using ADMM-based
Semi-NMF. ADMM-based Semi-NMF enables fast convergence and
estimation of sparse activity compared to Semi-NMF using the MM
algorithm.

3.2. Dictionary Learning

In order to construct a compact dictionary, a parallel dictionary
between the source and target speakers is estimated by parallel-
constrained Semi-NMF using ADMM. The objective function is
represented as follows:

min dF (V
s,WsHs) + dF (V

t,WtHt) (8)

+
ϵ

2
||Hs −Ht||2F + λ||Hs||1 + λ||Ht||1

sub to Hs = Hs
+,H

s
+ ≥ 0,Ht = Ht

+,H
t
+ ≥ 0

where Vs, Vt, Ws, Wt, Hs, and Ht denote the source exemplars,
the target exemplars, the source dictionary, the target dictionary, the
source activity, and the target activity, respectively. The source and
target exemplars are aligned by DTW so that they have the same
number of frames. ϵ and λ represent a weight of parallel constraint
and a weight of sparsity constraint. The augmented Lagrangian cor-
responding to (8) is as follows:

Lρ(W
s,Hs,Wt,Ht,Hs

+,H
t
+) =

dF (V
s,WsHs) + dF (V

t,WtHt) +
ϵ

2
||Hs −Ht||2F

+ λ||Hs||1 + ⟨αHs ,Hs −Hs
+⟩+

ρ

2
||Hs −Hs

+||2F

+ λ||Ht||1 + ⟨αHt ,Ht −Ht
+⟩+

ρ

2
||Ht −Ht

+||2F (9)

where ρ denotes the tuning parameter that controls the convergence
rate. The updates alternately optimize (9) with respect to each of the
four primal variables, followed by gradient ascent in each of the two
dual variables. This is summarized below.

Table 1. Algorithm of Dictionary Learning
Input Vs,Vt

Initialize Ws,Hs,Wt,Ht,Hs
+,H

t
+, αHs , αHt

Repeat
Ws ← (Vs(HsT))/(Hs(HsT))

Wt ← (Vt(HtT))/(Ht(HtT))
Hs ← (2WsTWs + (ρ+ ϵ)I)

\(2WsTWs − αHs + ρHs
+ + ϵHt − λ)

Ht ← (2WtTWt + (ρ+ ϵ)I)

\(2WtTWt − αHt + ρHt
+ + ϵHs − λ)

Hs
+ ← max(Hs + 1

ρ
αHs , 0)

Ht
+ ← max(Ht + 1

ρ
αHt , 0)

αHs ← αHs + ρ(Hs −Hs
+)

αHt ← αHt + ρ(Ht −Ht
+)

Until convergence return Ws,Hs
+,W

t,Ht
+

3.3. Conversion

After a pair of parallel dictionaries, Ws and Wt is estimated, input
source spectra Vs is converted to V̂t by using Semi-NMF based on
ADMM. The objective is represented as follows:

min dF (V
s,WsHs) + λ||Hs||1 (10)

sub to Hs = Hs
+,H

s
+ ≥ 0.

The augmented Lagrangian corresponding to (10) is as follows:

Lρ(W
s,Hs,Hs

+) =

dF (V
s,WsHs) + λ||Hs||1

+ ⟨αHs ,Hs −Hs
+⟩+

ρ

2
||Hs −Hs

+||2F (11)

Ws is determined and Hs is estimated by using the following algo-
rithm.

Table 2. Algorithm of Conversion
Input Vs,Ws

Initialize Hs,Hs
+, αHs

Repeat
Hs ← (2WsTWs + ρI)

\(2WsTWs − αHs + ρHs
+ − λ)

Hs
+ ← max(Hs + 1

ρ
αHs , 0)

αHs ← αHs + ρ(Hs −Hs
+)

Until convergence return Hs
+

By using the estimated activity Hs and the target dictionary Wt,
the converted spectra V̂t is constructed as follows:

V̂t = WtHs (12)

4. EXPERIMENTAL RESULTS

4.1. Experimental Conditions

The proposed VC technique was evaluated by comparing it with the
conventional NMF-based method [25] and the conventional GMM-
based method in a speaker-conversion task using clean speech data.
The source speaker and target speaker were one male and one female
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speaker, respectively, whose speech is stored in the ATR Japanese
speech database [26]. The sampling rate was 12 kHz. Two-hundred
sixteen words were used for training and 50 sentences were used for
testing. In our proposed method, ρ, ϵ, λ are set to be 1, 1, 0.1, respec-
tively. The maximum number of iterations of Semi-NMF is set to 50
for dictionary learning and 300 for conversion. Those parameters are
chosen experimentally.

In the proposed and conventional GMM-based methods, mel-
cepstrum + ∆ is used as a spectral feature. Its number of dimensions
is 48. In the NMF-based method, the dimension number of the spec-
tral feature is 1,539. It consists of a 513-dimensional STRAIGHT
spectrum [27] and its consecutive frames (the frame coming before
and the frame coming after). The number of Gaussian mixtures in
the GMM-based method was set to 128, which is experimentally se-
lected.

In this paper, F0 information is converted using a conventional
linear regression based on the mean and standard deviation [16].
The other information, such as aperiodic components, is synthesized
without any conversion.

4.2. Results and Discussion

First, we tested the convergence speed between the proposed Semi-
NMF method using ADMM and the Semi-NMF method using MM.
The number of bases in the dictionary was set to 1,000. The con-
vergence of the different algorithms is show in Fig. 3, where the
x-axis shows the iteration and y-axis shows the convergence on a
logarithmic scale. This figure shows that ADMM can produce faster
convergence than MM when ρ is small.
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Objective tests were carried out using the Normalized Spectrum
Distortion (NSD) [28].

NSD =

√
||Xt − X̂t||2/||Xt −Xs||2, (13)

where Xs, Xt, and X̂t denote the source, target, and converted
spectrum, respectively. Table 3 shows the NSD and computational
times for each method. In our proposed method, 1,000 or 5,000
bases are estimated. The distortion between our proposed method
using 1,000 bases and 5,000 bases is not significant. Our proposed
method is slightly worse than the NMF-based method, but the pro-
posed method can reduce the computational times. The distortion
between the proposed method and GMM-based method is not sig-
nificant.

For the subjective evaluation, a total of 15 Japanese speakers
took part in the test using headphones. We compared our proposed

Table 3. NSD and computational times of each method
NSD times [s]

GMM 1.66 2
NMF 1.54 916
Proposed(1,000) 1.69 12
Proposed(5,000) 1.70 310

method (Proposed(1,000) in Table 3), an NMF-based VC method,
and a GMM-based VC method. The left side of Fig. 4 shows the
results of a MOS test on speech quality. The opinion score was set
to a 5-point scale (5: excellent, 4: good, 3: fair, 2: poor, 1: bad). The
difference between Semi-NMF and GMM, and NMF and GMM is
marginally significant in the p-value test.

The right side of Fig. 4 shows the results of a DMOS test on
similarity to the target speaker. The opinion score was set to a 5-
point scale (5: very similar, 4: similar, 3: fair, 2: different, 1: very
different). These differences are not significant.

Based on from these evaluations, the conversion quality of our
proposed VC method was almost the same as the conventional NMF-
based VC method, and we were able to effectively reduce the com-
putational times and memory usage compared to the NMF-based VC
method.
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5. CONCLUSIONS

This paper proposed a Semi-NMF-based VC method using ADMM.
In order to reduce the computational times and memory usage, in the
NMF-based VC method, NMF is replaced with Semi-NMF so that
we can use compact spectral features. The convergence of conven-
tional Semi-NMF using the MM algorithm is slow, and we proposed
Semi-NMF using ADMM, which enables faster convergence and es-
timation of sparse activity. Also, we proposed a dictionary-learning
scheme to estimate parallel compact dictionaries. We assume our
method can easily adapt to hyperspectral imaging [2] or topic mod-
eling [3].

Some problems still remain with our method. The proposed
method requires longer running time than the GMM-based method.
Wu et al. proposed a method for NMF-based VC to reduces the com-
putational cost [10]. In future work, we will combine these methods
and investigate the optimal number of bases for better performance.

In [29], we proposed a phoneme-categorized dictionary that en-
hances the performance of exemplar-based VC. We assume our pro-
posed method can achieve better performance by combining it with
this method. Also, we will apply our method to noisy environments
and an assistive technology for people with articulation disorders.
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