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ABSTRACT

This paper presents a novel probabilistic model that represents a joint
probability of two visible variables with a deep architecture, called a
deep relational model (DRM). The model stacks several layers from
one visible layer on to another visible layer, sandwiching hidden lay-
ers between them. As with restricted Boltzmann machines (RBMs)
and deep Boltzmann machines (DBMs), all connections (weights)
between two adjacent layers are undirected. During the maximum-
likelihood (ML)-based training, the network attempts to capture la-
tent complex relationships between two visible variables (e.g., an
image showing a certain number and its corresponding label) thanks
to its deep architecture. Unlike deep neural networks, 1) the pro-
posed DRM is a totally generative model, and 2) the weights can
be optimized in a probabilistic manner. This paper presents and
discusses the experiments conduced to evaluate our DRM’s perfor-
mance in recognition and generation tasks.

Index Terms— Image classification, image generation, deep
learning, generative model

1. INTRODUCTION

Since Hinton et al. introduced an effective pre-training algorithm for
deep neural networks' (DNNs) using deep belief networks (DBNs)
in 2006 [1], the use of deep learning has rapidly spread in the field
of machine learning, artificial intelligence, signal processing, etc. A
DBN is a graphical model that stacks restricted Boltzmann machines
(RBMs) [2] layer-by-layer, each of which represents the probability
distribution of visible variables with hidden variables. The effec-
tiveness of using DBNs (or RBMs) has been proved especially in
discriminative or deterministic tasks, such as handwritten character
recognition [1], 3-D object recognition [3], machine transliteration
[4], speech recognition [5], and voice conversion [6]. The discrim-
inative tasks are generally achieved by setting the initial values of
weights of a DNN as the trained weights of a DBN, and running
back-propagation to fine-tune the DNN weights. This can be done
due to the ability of deep learning that captures high-level abstrac-
tions at higher layers.

When it comes to the use of deep learning for generation tasks,
we can find various models, such as a deep Boltzmann machines
(DBM) [7], a denoising auto-encoder (DAE) [8], a shape Boltzmann
machine (ShapeBM) [9], and a sum-product network (SPN) [10].
These models were mainly introduced to capture high-order abstrac-
tions for good representation of the observations, rather than for dis-
criminative goal. Once obtaining high-level abstractions, we can, for

IThe term “neural networks” usually refers to a feedforward (directed)
type of neural networks, and we also follow this here.
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instance, remove some noise on the observations, or restore missing
parts in the observations.

Most of the existing deep-learning approaches focus on extract-
ing high-order abstractions from one variable. In this paper, we try
to capture the high-order relationships between two different types
of variables based on deep learning. For that, we define a new prob-
abilistic model called a deep relational model (DRM). A DRM is
similar to an RBM and a DBM, each of which is a probabilistic
model based on an energy function. The model sandwiches sev-
eral hidden layers? between two visible layers and defines a joint
probability for the two visible variables. Every two adjacent layers
are connected with undirected weights, which are estimated so as to
maximize the likelihood of the two visible variables. Interestingly,
since the DRM is a totally generative model, it allows us not only to
apply it to recognition tasks, but to also generate samples of one vari-
able from the other variable. For example, considering that we have
two kinds of variables for a hand-written digit image and a one-hot
vector of the labels, we can estimate the label by inferring mean-field
posteriors given an image (recognition task). On the other hand, by
inferring posteriors given a label, we could obtain a generated image
corresponding to the label (generation task).

2. RELATED WORK

In this section, we compare our proposed model, a deep relational
model (DRM), with other related models: a restricted Boltzmann
machine (RBM), a deep belief network (DBN) [1], a deep Boltz-
mann machine (DBM) [7], a deep energy model (DEM) [11], and
a deep neural network (DNN). As shown in Figure 1, each model
except an RBM has a deep architecture by stacking a visible layer
a and multiple hidden layers h1, ho, - - - layer-by-layer with having
connections between adjacent two layers, which has the capability
of representing more complex data than an RBM that stacks a single
hidden layer. A DNN and the proposed model further stack another
visible variable y on the top. Therefore, these two models try to
capture latent relationships between « and y, while the other mod-
els just discover latent features or representation from .

An important factor in distinguishing each model is the direc-
tion of the connections between two adjacent layers. For example, a
DBN has undirected connections at the top two layers, which form
an RBM, and directed connections to the lower layers. A general
DNN is a feedforward model; every two adjacent layers have deter-
ministic weights in the direction from the source to the target vari-
ables. Meanwhile, the proposed DGM has totally bidirectional con-

2When we give one hidden layer for our model, it is equivalent to an RBM
with a concatenated vector of two visible variables. This will be discussed
later.
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Fig. 1. Graphical representation of (a) a restricted Boltzmann machine, (b) a deep belief network, (c) a deep Boltzmann machine, (d) a deep
energy model, (e) a deep neural network, and (f) the proposed model, a deep relational model. Two-way arrows and one-way arrows indicate
undirected weights and directed weights, respectively. Dotted arrows represent deterministic relationships.

nections through all layers, just like a DBM does. This leads to the
propagatation of information from the bottom up and from the top
down in the network, while a DNN only infers from bottom to top.
Assuming « and y indicate a vectorized image and a one-hot vector
of the labels, a DGM allows us not only to estimate the label vec-
tor given an image, but also to generate an image from given a label
vector.

Another aspect is the way parameters are estimated. Energy-
based models, which include RBMs, DBMs, DEMs, and DGMs,
are stochastic models in which the parameters are estimated so as
to maximize the likelihood of observations®. On the other hand, the
parameters of a DNN are optimized using back-propagation, where
the errors between the output of the network and the target vector are
minimized and propagated back to the lower layers. Since a stochas-
tic model, such as a DGM, optimizes the parameters in a proba-
bilistic framework, we can further extend the parameter estimation
method to using maximum a posteriori (MAP), Bayesian inference,
and so on.

Usually, deep-learning methods, such as a DBN, a DBM and a
DEM, are used for the pre-training of a DNN. As reported in [1], a
pre-trained DNN dramatically outperformed a randomly-initialized
DNN. Generally speaking, in a deep network, error signals get
weaker as they are back-propagated to the lower layer, which causes
difficulties in estimating the parameters of the lower layer. There-
fore, the pre-training approaches are considered to be effective in
compensating for the thin gradients of the parameters. However,
these approaches learn high-order representation in an unsupervised
manner without knowing the existence of the target features. There-
fore, it could be said that the learned weights are not necessarily
appropriate for the initial values of a DNN that takes the target fea-
tures into account. Our model, in contrast, connects with a visible
layer for the target features and optimizes the parameters jointly,
which may lead to better results compared with the above methods,
even in a recognition task. Furthermore, our model is not adversely
affected by the problems associated with DBMs. During the training
of a DBM, it is difficult to estimate the weight parameters at the
higher layers due to the fading gradients far from the visible layer
[12]. On the contrary, our model sandwiches hidden layers with two
visible layers at the opposite sides, and hence it propagates gradients
more clearly top-to-bottom and bottom-to-top.

As for a DEM, Ngiam et al. also proposed a discriminative ex-
tension that considers target features in the model [11]. The model

3In practice, an approximation method is used.
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Fig. 2. Generating y from x by repeating mean-field updates.

is, however, still discriminative; it does not have an ability to gener-
ate the source features from the target features. Furthermore, what
the weights at the lower layers are trained without knowing about
the target features also applies to this model.

3. DEEP RELATIONAL MODEL

Considering a dataset of images and its the labels, the labels should
have been intentionally-, carefully-, and manually-assigned. As are-
sult, there must be a strong correlation between an image and the as-
signed label. To capture latent, complicated, high-order relationships
between two observable variables, such as an image and a one-hot
vector of the label, we introduce a deep stochastic network called
a deep relational model (DRM). The DRM will be defined as an
energy-based model, which resembles a restricted Boltzmann ma-
chine (RBM) and a deep Boltzmann machine (DBM).

As shown in Figure 1 (f), a DRM is a deep network that sand-
wiches multiple hidden layers with two visible layers. As an energy-
based model, a DRM defines a joint probability distribution of one
(first) visible variables & € {0,1}’ and the other (second) vis-
ible variables y € {0,1}* along with hidden variables h(") €
{0,1}”1(I = 1,---, L), where L is the number of hidden layers.
Similarly to an RBM and a DRM, each unit is only connected to the
units at the adjacent layers, and is not connected to the units at the
same layer. We define the joint probability distribution using a DRM
as follows:

o= e u®
Vh(D)
(@, y, YRV 0) = —L_¢B@uvh0) o
b 9 ) Z(e) ,
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where the energy function E is defined as:
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In addition to the previously-defined parameters b, ¢/, and W,
the bias parameters for the second visible variables d € R¥ are
used. WEHD ¢ RIXE jg the connection weights between the
highest hidden layer and the second visible layer.

Each conditional distributions given the units at the adjacent lay-
ers can be computed as:

plzi = 1R = (b, + W VRD) 3)
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Note that the conditional probabilities of hM and A" can be cal-
culated from Eq. (4) by regarding as h(®) = @ and h(E+D) = g,
respectively. Although the joint configuration of o and y is defined
in a DRM, the first variable @ is not directly connected to the sec-
ond variable y, and y is not required to infer &, as Eq. (3) indi-
cates. Through hidden layers,  and y propagate their information
to each other layer-by-layer. Therefore, the network models deep la-
tent correlations between x and y. That means the trained network
has the ability to estimate one variable given the other variable. To
estimate variable ¢ given x, for example, we use an iterative mean-
field update approach, as shown in Figure 2. In this procedure, we
first compute the expectations (mean-field approximation) for each
hidden layer’s unit from bottom to top, as in Eq. (4), regarding all
the values of the units at the upper layer as zero. Then, we calcu-
late the expectations of hidden units using the previously-calculated
values for R~ and A® in Eq. (4). We iterate this procedure T’
times with clamping the values of @ (in our experiments, we used
T = 10). Finally, we obtain the expected values of y by calculat-
ing E[y|z] ~ E[y|h(1)] = o(d + W) " h(L)), where h(E) is the
lastly-updated k(L) after the iteration.

For parameter estimation, the joint log-likelihood of x and y is
used. Differentiating partially with respect to each parameter, we
obtain:

dlogp(z,y;0)

abl = <xi>data - <£Ui>mode1 (6)
Ologp(x,y;0
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where (-)data and (-)moder indicate the expectations of the empirical
data and the inner model, respectively. As mentioned before, the

Fig. 3. [Iterative inference using mean-field updates. White cir-
cles and black circles indicate mean-field inference and randomly-
generated samples with their probabilities, respectively.

second terms are computationally difficult. Therefore, we approx-
imate the second terms with the expectations of the reconstracted
data (Z,y) that are sampled from the iteratively-updated inner
model (Figure 3). The iterative procedure is similar to the genera-
tion scheme shown in Figure 2, but we use the empirical values of
y during iteration. After updating each expectated value of hidden
units 7" times, we sample & and y using Eqs (3)(5).

To boost up parameter optimization, we further use a pre-
training scheme. In this scheme, before training each parameter of
a DRM, we perform training of RBMs. Similar to the greedy-wise
training used in a DBN [1], we first train RBMs at the lowest ( and
y) levels. The second RBMs use the expected values of the hidden
units inferred from the first RBMs for the values of visible units. In
this way, we perform pre-training from outer to inner. In the training
stage of a DRM, the parameters obtained in the pre-training are set
to the initial values of the training.

When we want to do image recognition tasks, we can estimate
the label y given an image «, as discussed in the previous subsection
(see Figure 2). However, we can also employ a fine-tuning scheme.
After the training of the DRM, we fine-tune each parameter using
back-propagation, treating it as a discriminative DNN.

4. EXPERIMENTS

To evaluate our method and examine its potential, we conducted
recognition and generation experiments using the MNIST dataset*.
The dataset contains 60,000 training and 10,000 test images of hand-
written digits (0-9) with a size of 28 x 28 pixels, along with the
label data. A classification with only ten classes is not a hard task,
and if we use the full training set of a large number of data, the error
rate becomes very low, which may make it difficult to evaluate and
compare each method. Therefore, we reduced the number of train-
ing data to 10,000 randomly-selected images. To speed-up learning,
we divided the training data into mini-batches, each of which con-
tained 20 data, and trained the model with a learning rate of 0.1 in
50 epochs.

4.1. Recognition Task

For all the experiments, we used a four-layer network: the first visi-
ble layer, two hidden layers, and the second visible layer. In our first
recognition experiments, we investigated how the model performs

4The MNIST dataset is
exdb/mnist/index.html.

available at  http://yann.lecun.com/
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Table 1. Error rate [%] when changing the number of hidden units
at the 1st and the 2nd hidden layers.

Ist\ 2nd 50 100 200 300 400 500
200 11.68 10.1 897 834 10.02 6.98
300 9.12 7.74 643 595 7.30 6.59
400 7.18 697 522 494 394 4.5
500 835 775 579 4.67 451 4.87
8
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Fig. 4. Error rate [%] for the MNIST dataset obtained by each
method.

when changing the number of hidden units from 200 to 500 for the
first hidden layer, and from 50 to 500 for the second hidden layer.
The number of first and the second visible units are 28 x 28 = 784
and 10, respectively. The experimental results are summarized in Ta-
ble 1. As shown in Table 1, the error rate was most improved when
400 hidden units were used for both hidden layers. As indicated, the
large number of hidden units did not necessarily improve the error
rate. Interestingly, the networks that have more units at the first hid-
den layer than the second hidden layer produced better results than
their counterparts that have the same number of parameters but more
units at the second hidden layer than the first layer (e.g., the network
of 500 1st-hidden units and 300 2nd-hidden units outperformed the
network of 300 1st-hidden units and 500 2nd-hidden units, 4.67%
compared to 6.59%). This is because the first visible layer has more
units than the second visible layer, and if the network has fewer units
at the higher layers, the information at the lower layers is gradually
propagated and compressed smoothly as going up.

Secondly, we compared our method with three conventional
methods: a DNN, a DBN, and a DBM. We used the same condi-
tions for the conventional methods as for our model; 10,000 training
data, a learning rate of 0.1, a batch-size of 20, and the number
of 50 for epochs were used. Each network-based method has two
hidden layers, and was compared in the case of 400 1st-hidden-
layer units and 200 2nd-hidden-layer units (“[400 200]”) with the
case of 400 1st-hidden-layer units and 400 2nd-hidden-layer units
(“[400 400]”). After training the DBN, the DBM, and the DRM,
we fine-tuned their parameters using back-propagation of 10 epochs
(noted as “fine-DBN”,“fine-DBM”, and “fine-DRBM?”, respectively,
in Figure 4), while a DNN trained the parameters starting from
randomly-initialized values. Figure 4 shows the comparison results.
Our model “DRM” used the mean-field-update scheme to estimate
y (Figure 2), and “fine-DRM” used the fine-tuning scheme and
produced the label vectors in a feedforward DNN). As shown in
Figure 4, our model “fine-DRM” performed best of all in both cases

3 ¥
F 9
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(a) DRM (b) Mean
Fig. 5. Generated images given each one-hot label using our model

(left), and mean values over the training data calculated for each
label (right).

of “[400 200]” and “[400 400]”. This is due to the fact that a DRM
models a route from an image to the label in the stochastic training,
while a DBN and DBM do not. As observed, the DRM is a bidirec-
tional generative model, and if the parameters are specialized and
tuned as a directional, discriminative model (i.e., “fine-DRM”), the
performance was improved. An interesting observation is that the
performance of our model without fine-tuning is comparable to that
of the other fine-tuned models (3.94% compared to 3.71% of a DBN
and to 4.16% of a DBM), even though it is a still generative model.

4.2. Generation Task

As we generate the label given an image using a DRM, it will be pos-
sible to generate the image given a label, because a DRM models the
joint distribution of the two. To examine the potential of this possi-
bility, we conducted a generation experiment. In this experiment, we
used a [400 200] architecture and generated images & given the one-
hot labels y through mean-field updates in a similar manner to the
generation scheme (reverse up and down in the left side of Figure 2).
Essentially, this procedure generates an image from y; however, the
dimension of 10 for the vector vy is too small to estimate the upper
features of 200, 400, and 784 units properly through the iterative up-
dates. Therefore, we gave the initial values of hidden units as the
means of the hidden units calculated from the training data. After
that, we obtained the images for each one-hot vector of the labels
as shown in Figure 5 (a). To compare the images, we list images
obtained from just calculating the means of each pixel for each label
in Figure 5 (b). As shown in Figure 5, the images from Mean are
blurred and obscure. On the other hand, the images from a DRM are
very clear and sharpened, much like real handwritten digits.

5. CONCLUSION

In this paper, we proposed a new joint distribution model of two
variables that has a hierarchical architecture to capture latent, com-
plicated, high-order relationships between the two. The proposed
model, a deep relational model (DRM), is viewed as one of the
energy-based models, and the parameters are trainable using max-
imum likelihood with mean-field approximation. In our recognition
experiments, we showed its high performance, especially when fine-
tuned. In the generation experiments, we obtained interesting im-
ages generated from the trained DRM. In the future, we will further
investigate its potential, focusing particularly on generative tasks.
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