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ABSTRACT
Voice conversion (VC) is being widely researched in the field of
speech processing because of increased interest in using such pro-
cessing in applications such as personalized Text-to-Speech sys-
tems. We present in this paper a many-to-one VC method us-
ing exemplar-based sparse representation, which is different from
conventional statistical VC. In our previous exemplar-based VC
method, input speech was represented by the source dictionary and
its sparse coefficients. The source and the target dictionaries are
fully coupled and the converted voice is constructed from the source
coefficients and the target dictionary. This method requires parallel
exemplars (which consist of the source exemplars and target ex-
emplars that have the same texts uttered by the source and target
speakers) for dictionary construction. In this paper, we propose a
many-to-one VC method in an exemplar-based framework which
does not need training data of the source speaker. Some statisti-
cal approaches for many-to-one VC have been proposed; however,
in the framework of exemplar-based VC, such a method has never
been proposed. The effectiveness of our many-to-one VC has been
confirmed by comparing its effectiveness with that of a conven-
tional one-to-one NMF-based method and one-to-one GMM-based
method.

Index Terms— voice conversion, speech synthesis, many-to-
one, exemplar-based, NMF

1. INTRODUCTION

In recent years, approaches based on sparse representations have
gained interest in a broad range of signal processing. In the ap-
proaches based on sparse representations, the observed signal is rep-
resented by a linear combination of a small number of basis vectors,

vj ≈
∑K

k=1 wkhk,j = Whj (1)

where vj represents the j-th frame of the observation. wk and
hk,j represent the k-th basis vector and the weight, respectively.
W = [w1 . . .wK ] and hj = [h1,j . . . hK,j ]

T are the collection of
the basis vectors and the stack of weights. When the weight vec-
tor hl is sparse, the observed signal can be represented by a linear
combination of a small number of bases that have non-zero weights.

In the field of speech processing, Non-negative Matrix Factor-
ization (NMF) [1] is a well-known approach for source separation
and speech enhancement based-on sparse representation [2, 3]. In
some source separation approaches, a dictionary is constructed for
each source, and the mixed signals are expressed with a sparse rep-
resentation of these dictionaries. By using only the weights (called
“activity” in this paper) of basis in the target dictionary, the tar-
get signal can be reconstructed. Gemmeke et al. also proposed an
exemplar-based method using NMF for noise-robust speech recog-
nition [4].

Inspired by these sparse representation-based approaches, we
proposed exemplar-based Voice Conversion (VC) in [5, 6]. VC
is a technique for converting specific information in speech while
maintaining the other information in the utterance. One of the most
popular VC applications is speaker conversion [7]. In speaker con-
version, a source speaker’s voice individuality is changed to a spec-
ified target speaker’s so that the input utterance sounds as though
a specified target speaker had spoken it. In our exemplar-based
VC method, source exemplars and target exemplars are extracted
from parallel training data, having the same texts uttered by the
source and target speakers. The input source signal is expressed
with a sparse representation of the source exemplars using NMF.
By replacing a source speaker’s exemplar with a target speaker’s
exemplar, the original speech spectrum is replaced with the target
speaker’s spectrum.

The most popular conventional approach to VC is a statisti-
cal one [7, 8, 9]. Among these approaches, the Gaussian Mixture
Model (GMM)-based mapping approach [7] is widely used. In this
approach, the conversion function is interpreted as the expectation
value of the target spectral envelope. The conversion parameters are
evaluated using Minimum Mean-Square Error (MMSE) on a paral-
lel training set. A number of improvements in this approach have
been proposed; however, over-smoothing and over-fitting problems
have been reported [10] because of statistical averages and the large
number of parameters.

The benefits to an exemplar-based approach can be summa-
rized in two points. First, an exemplar-based approach can convert
speech into a natural-sounding voice. Because our approach is not
a statistical one, we assume that our approach can avoid the over-
fitting problem and create a more natural voice [11]. Moreover, our
exemplar-based VC method has noise robustness [12]. The noise
exemplars, which are extracted from the before- and after-utterance
sections in an observed signal, are used as the noise dictionary, and
the VC process is combined with an NMF-based noise reduction
method.

A high hurdle for the practical use of VC has been the fact that
conventional VC needs a large amount of parallel training data be-
tween the source and target speakers. In GMM-based VC, there
have been approaches that do not require parallel data; however, an
exemplar-based approach without parallel data has never been pro-
posed. This paper proposes many-to-one VC using an exemplar-
based sparse representation, which does not need any training data
from a source speaker. We introduce Multiple Non-negative Ma-
trix Factorization (Multi-NMF) and the parallel dictionaries that are
needed in conventional NMF-based VC are replaced with dictionar-
ies that are represented by the dictionaries of many speakers. We
assume this method can be easily applied to many-to-many VC.

The rest of this paper is organized as follows: In Section 2,
related works are introduced. In Section 3, conventional one-to-one
NMF-based VC is described. In Section 4, our proposed method
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is described. In Section 5, the experimental data are evaluated, and
the final section is devoted to our conclusions.

2. RELATED WORKS

The GMM-based approach is widely used for VC because of its
flexibility and good performance [7]. Toda et al. [13] introduced
dynamic features and the Global Variance (GV) of the converted
spectra over a time sequence. Helander et al. [10] proposed trans-
forms based on Partial Least Squares (PLS) in order to prevent
the over-fitting problem associated with standard multivariate re-
gression. GMM-based VC is also being used for assistive tech-
nology [14], Text-to-Speech (TTS) systems [15], spectrum restor-
ing [16], and audio bandwidth extension [17].

The statistical VC mentioned above needs a large-volume par-
allel corpus between the source and target speakers. In this pa-
per, “parallel” means that the text of the corpus between the source
and target speakers is the same. This constraint can be a difficult
requirement to meet in practice. In GMM-based VC, there have
been approaches that do not require parallel data. Lee et al. [18]
used Maximum A Posteriori (MAP) in order to adapt training data.
Mouchtaris et al. [19] proposed non-parallel training for GMM-
based VC. Toda et al. [20] proposed eigen-voice GMM (EV-GMM)
for many-to-many VC in which the source and target speech are
represented by a super vector of the reference speakers. Saito et
al. [21] proposed tensor representation for one-to-many GMM VC.

Our VC approach is exemplar-based, which is different from
conventional GMM-based VC. Exemplar-based VC using NMF
was first proposed in [5]. The noise robustness of this exemplar-
based approach is revealed in [6]. In [22], we proposed multimodal
NMF-based VC to enhance the noise robustness of our method. The
natural sound of the converted voice produced using NMF-based
VC has been confirmed in [11]. Wu et al. [23] applied a spectrum
compression factor to NMF-based VC and improved the conversion
quality. NMF-based VC is being also adapted to assistive technol-
ogy for those with speech articulation disorders [24].

3. EXEMPLAR-BASED VOICE CONVERSION

In the exemplar-based approach, the observed signal is represented
by a linear combination of a small number of bases. In this VC
method, each basis denotes the exemplar of the spectrum, and the
collection of exemplars W and the weight vector hj are called the
‘dictionary’ and ‘activity’, respectively. When the weight vector hj

is sparse, the observed signal can be represented by a linear combi-
nation of a small number of bases that have non-zero weights.

V ≈ WH (2)
V = [v1, . . . ,vJ ], H = [h1, . . . ,hJ ]. (3)

J represents the number of the frames. In this paper, we use
NMF [1], which is a sparse coding method, in order to estimate
the activity matrix.

Fig. 1 shows the basic approach of our exemplar-based VC,
where D,L, and J represent the numbers of dimensions, the num-
bers of frames, and the numbers of bases, respectively. Our VC
method needs two dictionaries that are phonemically parallel. Ws

represents a source dictionary that consists of the source speaker’s
exemplars and Wt represents a target dictionary that consists of
the target speaker’s exemplars. These two dictionaries consist of
the same words and are aligned with dynamic time warping (DTW)

just as conventional GMM-based VC is. Hence, these dictionaries
have the same number of bases.

A matrix of input source spectra Vs is decomposed into the
source dictionary Ws and the activity matrix Hs by using NMF.
This method assumes that when the source signal and the target sig-
nal (which are the same words but spoken by different speakers) are
expressed with sparse representations of the source dictionary and
the target dictionary, respectively, the obtained activity matrices are
approximately equivalent. Fig. 2 shows the activity matrices esti-
mated from parallel dictionaries. As shown in the figure, these ac-
tivities have high energies at similar elements. Therefore, a matrix
of target spectra V̂t can be constructed using the target dictionary
Wt and the activity matrix of the source signal Hs as shown in
Fig. 1.
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Figure 1: One-to-one VC using NMF
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Figure 2: Activity matrices for parallel utterances.

4. MANY-TO-ONE VOICE CONVERSION
USING MULTI-NMF

4.1. Flow of the proposed method

Our proposed method is based on the following assumptions:

1. The spectra of the arbitrary speaker are represented by a lin-
ear combination of the basis of many speakers.

2. An activity matrix represents phoneme information that is
speaker-independent.

Fig. 3 shows the flow of the proposed method. Vs, V̂s, as,
and Hs denote the matrix of input source spectra, the matrix of
converted spectra, the source speaker’s weight vector, and the ac-
tivity matrix of the source speaker, respectively. D, L, and J
denote the number of dimensions for a spectrum, the frame of
the source spectra, and the frame of the dictionary, respectively.
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WM ∈ R(D×J×K) denotes the source dictionary matrix, which
consists of the parallel exemplars of many speakers and K is the
number of speakers who are included in it. The superscript of
WM means that it consists of the dictionaries of many speak-
ers. The k-th speaker’s dictionary is denoted by WM

k ∈ R(D×J).
Wt ∈ R(D×J) denotes the target dictionary matrix, which consists
of the parallel exemplars of the target speaker.

First, the matrix of input source spectra Vs is represented as
follows, based on the assumption 1,

Vs ≈

(
K∑

k=1

as
kW

M
k

)
Hs (4)

where as
k denotes the k-th element of as. We emphasize that each

speaker’s dictionary is multiplied by the same activity matrix ele-
ment of Hs in (4). The summation in (4) can be represented as
Ws ≈

∑K
k=1 akW

M
k . In this framework, the source dictionary

Ws, which is used in one-to-one VC using NMF, is represented
by a linear combination of the dictionaries in WM . We assume
that the activity matrix represents the phoneme information and the
speaker weight vector represents the speaker identities. Therefore,
Multi-NMF can extract the phoneme information and the speaker
information from the input speech in the matrix representation.

Next, the converted spectra V̂t are constructed from the esti-
mated source speaker’s activity matrix Hs and the target dictionary
Wt based on assumption 2.

V̂s = WtHs (5)
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Figure 3: Flowchart of Many-to-one VC using Multi-NMF

4.2. Multi-NMF

We are proposing Multi-NMF, which estimates a speaker vector a ∈
R(1×1×K) and an activity matrix H ∈ R(J×L) from input spectra
V ∈ R(D×L) and given dictionary WM ∈ R(D×J×K). The cost
function of Multi-NMF is defined as follows,

d(V,

K∑
k=1

akW
M
k H) + λ||H||1 (6)

where the first term is the Kullback-Leibler (KL)-divergence be-
tween V and

∑K
k=1 akW

M
k H, and the second term is the L1-norm

regularization term that causes the activity matrix to be sparse. λ
represents the weight of the sparse constraint.

H and a are estimated by minimizing (6). The updating rule is
determined by adapting Jensen’s inequality 1.

ak ← ak∑
d,l(W

M
k H)dl

∑
d,l

(
vdl(W

M
k H)dl∑

k ak(WM
k H)

dl

)
(7)

H ← H. ∗ ((
K∑

k=1

akW
M
k )T(V./(

K∑
k=1

akW
M
k H)))

./((

K∑
k=1

akW
M
k )T1D×L + λ1J×L) (8)

where vdl denotes the element of V, and .∗ and ./ denote element-
wise multiplication and division, respectively.

5. EXPERIMENTS

5.1. Experimental conditions

We compared our method with conventional one-to-one NMF-
based VC and one-to-one GMM-based VC, which use parallel data
between the source and the target speakers as training data. Six
males and one female from the ATR Japanese speech database [25]
were used in this experiment. In our proposed method, the source
speaker is chosen from the six males and the source dictionary is
constructed from the parallel utterances of the other males. The fe-
male speaker is set as the target speaker. In each method, 50 parallel
sentences of each speaker were used for dictionary construction or
GMM training.

In the proposed and conventional NMF-based methods, the
number of dimensions for the spectral feature was 2,565. It con-
sisted of a 513-dimensional STRAIGHT [26] spectrum and its con-
secutive frames (the 2 frames coming before and the 2 frames com-
ing after). The number of iterations of NMF and Multi-NMF was
300 and λ in (6) was set to 0.1.

In the conventional GMM-based method,
MFCC+∆MFCC+∆∆MFCC is used as a spectral feature.
Its number of dimensions is 60. The number of Gaussian mixtures
was set to 64, which is experimentally selected. In this paper,
in order to focus on the spectra conversion, F0 information was
converted using parallel training data. It was converted using
conventional linear regression based on the mean and standard
deviation. The other information, such as aperiodic components,
was synthesized without any conversion.

In order to evaluate our proposed method, we conducted ob-
jective and subjective evaluations. For the objective evaluation, 75
sentences that are not included in the training data were evaluated.
We used Mel-cepstrum distortion (MelCD) [dB] [13] as a measure-
ment of objective evaluations, which is defined as follows,

MelCD = (10/ log 10)

√√√√2

24∑
d

(mcconv
d −mctard )2 (9)

where mcconv
d and mctard denote the d-th dimension of the con-

verted and target MFCCs.
The subjective evaluation was conducted on “speech quality”

and “similarity to the target speaker”. For the subjective evalua-
tion, 36 sentences were evaluated by 10 Japanese speakers. For the

1The derivation of (7) and (8) is uploaded to http://www.me.cs.
scitec.kobe-u.ac.jp/aihara/WASPAA2015.pdf
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evaluation on speech quality, we performed a Mean Opinion Score
(MOS) test [27]. The opinion score was set to a 5-point scale (5:
excellent, 4: good, 3: fair, 2: poor, 1: bad). On the similarity eval-
uation, the XAB test was carried out. In the XAB test, each subject
listened to the voice of the target speaker. Then the subject listened
to the voice converted by the two methods and selected which sam-
ple sounded most similar to the target speaker’s voice.

5.2. Results and discussions

Fig. 4 shows the Mel-CD of source speech and converted speech.
Source, Multi, NMF and GMM denote Mel-CD between the tar-
get and the source speech, converted by the proposed method, con-
verted by one-to-one NMF, and converted by one-to-one GMM, re-
spectively. As shown in the figure, the difference between conven-
tional one-to-one NMF and one-to-one GMM is not statistically sig-
nificant. Although our proposed method does not include the source
speaker’s spectra in the dictionary, the difference between one-to-
one VC methods and our proposed many-to-many VC method is
quite small. For speaker C, our proposed method is slightly better
than one-to-one NMF. This result shows that our proposed method
has the potential to outperform conventional one-to-one VC.

Fig. 5 shows the MOS test on speech quality. The error bar
shows the 95% confidence interval. The difference between our
proposed method and one-to-one NMF-based VC is not statisti-
cally significant. However, our proposed method obtained the better
score compared to one-to-one GMM-based VC.

Fig. 6 shows the results of the XAB test on speaker similarity
between the proposed method and one-to-one NMF-based VC. For
speakers A and B, the difference between these methods are not
statistically significant. However, our proposed method obtained a
slightly better score than one-to-one NMF-based VC in the case of
speaker C. This result supports the objective evaluation of speaker
C.

Fig. 7 shows the results of the XAB test on speaker similarity
between the proposed method and one-to-one GMM-based VC. Our
proposed method obtained a significantly higher score than one-to-
one GMM.

6. CONCLUSIONS

This paper proposed exemplar-based many-to-one VC using sparse
representation. In this framework, the input speaker’s spectra are
represented by linear combinations of spectra from a dictionary that
contains the spectra of many speakers. Our introduced Multi-NMF
estimates the source speaker weight vector and its activities from
input spectra and a dictionary. Therefore, the source speaker’s ut-
terance is converted to the target speaker’s utterance without source
speaker’s training data. We assume that Multi-NMF makes it pos-
sible to decompose input speech into phonetic information, which
is estimated as activities, and the speaker information, which is es-
timated as the speaker weight vector. Experimental results revealed
that the conversion quality of the proposed method is almost the
same as that of conventional one-to-one VC that requires source
speaker’s training data. We assume this method can be easily ap-
plied to many-to-many VC.

In future work, we will apply our method to noisy environments
and an assistive technology for people with articulation disorders.
Comparison between our method and other many-to-one VC meth-
ods will also be a part of our future work.
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