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ABSTRACT

We propose in this paper a lip-to-speech conversion method that con-
verts “unvoiced” lip movements to “voiced” utterances, where par-
allel lip movements and speech spectra are stored as a source dic-
tionary and a target dictionary, respectively. An input lip image is
decomposed into a linear combination of bases from the source dic-
tionary, and its weight is estimated by Non-negative Matrix Factor-
ization (NMF). The selected image bases are replaced with speech
bases from the target dictionary, and the speech spectra are con-
structed. We assume this method will be an assistive technology for
people who have speech disabilities. In this paper, NMF using β di-
vergence is used as a cost function and introduced locality-constraint
in order to increase sparsity in an activity matrix. The effectiveness
of our method was confirmed by objective and subjective evalua-
tions.

Index Terms— speech synthesis, multimodal, assistive technol-
ogy

1. INTRODUCTION

An assistive technology is a system or a product which is used to
improve the functional capabilities of individuals with disabilities.
For past few decades, some speech processing techniques have been
adopted to the assistive technology. As a consequent of recent ad-
vance in statistical text-to-speech synthesis (TTS), Hidden Markov
Model (HMM)-based TTS is used for reconstructing the voice of
individuals with degenerative speech disorders [1]. Voice conver-
sion (VC) is also applied to the assistive technology. A Gaussian
mixture model (GMM)-based VC method has been applied to re-
construct speaker’s individuality in electrolaryngeal speech [2] and
speech recorded by Non-Audible Murmur (NAM) microphones [3].

In this paper, we propose a lip-to-speech synthesis using a sparse
representation technique. Lip images without a voice recording are
converted to a voice utterance. We assume our proposed method will
be an assistive technology for those who have a speech impediment.
There are 34,000 such people in Japan alone; therefore, there is a
great need for such a technology. Moreover, our approach can be
adopted to voice reconstruction of videos lacking sound tracks or
communication tools in noisy environments.

Lip reading is a technique of understanding speech by visually
interpreting the movements of the lips, face and tongue when the
spoken sounds cannot be heard. For example, for people with hear-
ing problems, lip reading is one communication skill that can help
them communicate better. McGurk et al. [4] reported that we per-
ceive a phoneme not only from auditory information from the voice
but also from visual information from the lips or from facial move-
ments. Moreover, it is reported that we try to catch the movement
of lips in a noisy environment and we misunderstand the utterance
when the movements of the lips and the voice are not synchronized.

In the field of speech processing, audio-visual speech recognition
has been researched for robust speech recognition under noisy en-
vironments [5, 6]. However, as far as our knowledge, lip-to-speech
synthesis has never been proposed.

We used Non-negative Matrix Factorization (NMF) [7], which is
a famous approach using sparse representations. Sparse representa-
tions are employed to speech separation [8], super resolution [9], etc.
NMF is widely used in the field of speech processing, and we used
it in a VC framework [10]. In this approach, parallel dictionaries,
which consist of the same utterances of the source speaker and the
target speaker, are needed. An input source speaker’s utterance is de-
composed into a linear combination of a small number of bases from
the source dictionary. The selected bases are replaced with the bases
of the target dictionary, which are parallel to the source bases. We
adopted this method for lip-to-speech synthesis. We need parallel
exemplars of visual and audio speech data for system construction;
however, in a test phase, a voiceless lip image can be converted to
a voiced utterance without utterance recognition techniques such as
standard VC.

Our dictionary is over-complete and contains a large number of
bases. Because lip movements closely resemble each other com-
pared to speech spectra, lip images may be decomposed into a large
number of bases, which can lead to a degradation of the converted
sound. Therefore, in this paper, we introduce a locality-constraint to
the activities of NMF [11] in order to increase the sparseness.

The rest of this paper is organized as follows: In Section 2, re-
lated works are introduced. In Section 3, NMF using β divergence
is described. In Section 4, our proposed method is explained. In
Section 5, the experimental data are evaluated, and the final section
is devoted to our conclusions.

2. RELATED WORKS

Lee et al. [7] proposed an NMF algorithm using a maximization-
minimization algorithm. The cost function used in [7] was the Eu-
clidean distance and the Kullback-Leibler (KL) divergence. NMF
using the Itakura-Saito (IS) divergence has also been proposed [12]
because the IS divergence was presented as “a measure of the good-
ness of fit between two spectra”. Eguchi et al. [13] introduced β
divergence, which is a family of cost functions that includes the Eu-
clidean distance, the KL divergence and the IS divergence. The al-
gorithm of NMF using the β divergence is summarized in [14]. In
the field of speech processing, NMF has been used for speech sep-
aration [8], music transcription [15], noise-robust speech recogni-
tion [16], etc. In [10, 17], we proposed VC using NMF, and this pro-
posed method was the inspiration behind our lip-to-speech synthe-
sis approach. NMF-based VC has been also adopted as an assistive
technology for articulation disorders [18]. In our previous work [19],
we proposed a multimodal NMF-based VC method which converts
audio-visual features to target speaker’s audio features. In almost all



approaches for speech processing using NMF, the KL divergence or
the β divergence is used as its cost function. Multimodal statistical
VC was proposed in [20, 21]

In the case of image processing, Orthogonal Matching Pursuit
(OMP) [22] or Sparse Coding (SC) is the popular algorithm of sparse
representation. Those algorithms are used for image clustering [23],
super resolution [9] etc. In most cases, the Euclidean distance is used
for the cost function of these algorithms. In this paper, we employed
NMF using the β divergence and searched for the best value of β.

Audio-visual speech recognition and lipreading have been re-
searched in the field of signal processing. Tao and Busso [24] pro-
posed audio-visual whisper isolated digits recognition using HMMs.
Noda et al. [25] proposed convolutional neural network-based visual
feature extraction for lipreading. However, the word recognition rate
of the state-of-the-art lipreading in a closed speaker open-vocabulary
task is less than 40%. This result shows the difficulties in lipreading.
The other silent speech interfaces, for example NAM microphones,
are introduced in [26].

Speech-to-lip movement synthesis is an inverse problem to
our lip-to-speech synthesis. Speech-to-lip synthesis has been re-
searched for the needs of avatar talk on the Internet. A recognition-
based approach using HMMs has been widely researched [27].
Lavagetto [28] applied neural networks to speech-to-lip conver-
sion for the assistive technology for the people with hearing loss.
Zhuang [29] applied a statistical VC method using a Gaussian Mix-
ture Model (GMM) [30] to speech-to-lip conversion, which does not
need utterance recognition of lip images.

3. NON-NEGATIVE MATRIX FACTORIZATION
USING β DIVERGENCE

In the approaches based on sparse representations, the observed sig-
nal is represented by a linear combination of a small number of
bases.

xl ≈
∑J

j=1 wjhj,l = Whl (1)

xl represents the l-th frame of the observation. wj and hj,l represent
the j-th basis and the weight, respectively. W = [w1 . . .wJ ] and
hl = [h1,l . . . hJ,l]

T represent the collection of the bases and the
stack of weights. When the weight vector hl is sparse, the observed
signal can be represented by a linear combination of a small number
of bases that have non-zero weights. In this paper, each basis denotes
the exemplar of the speech or image signal, and the collection of
exemplar W and the weight vector hl are called the ‘dictionary’
and ‘activity’, respectively. When feature vectors are lined up, (1) is
represented as an inner product of feature matrix.

X ≈ WH (2)
X = [x1, . . . ,xL], H = [h1, . . . ,hL]. (3)

where L denotes the number of frames.
In this paper, we employ NMF in order to estimate an activity

matrix. The cost function of NMF is defined as follows:

dβ(xl,Whl) + λ||hl||1 s.t. hl ≥ 0 (4)

The first term is the β divergence between xl and Whl. The second
term is the sparse constraint with the L1-norm regularization term
that causes hl to be sparse.

The β divergence is parameterized with a parameter β, which
takes the Euclidean distance (β = 2), the KL divergence (β = 1)

and the IS divergence (β = 0) as follows:

dβ(x,y) =


1

β(β−1)
(xβ + (β − 1)yβ − βxyβ) β ∈ R\{0, 1}

x log(x/y)− x+ y β = 1

(x/y)− log(x/y)− 1 β = 0

h minimizing (4) is estimated iteratively by applying the following
update rule [14]:

hl ← hl

(∑
j wjlxlx̂

β−2
l∑

j wjlx̂
β−1
l

)γ(β)

(5)

where we denote [Wh]l = x̂l and γ(β) as follows:

γ(β) =


1

2−β
β < 1

1 1 ≤ β ≤ 2
1

β−1
β > 2

(6)

In our proposed method, the dictionary W is obtained by just
lining up the parallel data. Therefore, it does not use any training
algorithm to obtain the source dictionary.

4. SPEECH PRODUCTION USING NMF

4.1. Flow of the Proposed Method

Fig. 1 shows the flow of our proposed method. XV , WV , WA and
XA denote input image features (Dv × L), source visual dictionary
(Dv × J), target audio dictionary (Da × J), and produced audio
features (Da×L), respectively. Dv , L, Da and J denote the number
of dimensions of the image features, the number of frames of input
image features, the number of dimensions of the audio features, the
number of bases of each dictionary, respectively.

The source dictionary and the target dictionary consist of the
same utterances, like parallel training data of VC. Input lip images
without any voice are converted to image features. These features are
represented by a linear combination of bases from the source dictio-
nary and its activities using NMF. Because the source dictionary and
the target dictionary are parallel, the estimated activities are multi-
plied to the target dictionary and the audio features are synthesized.

H
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Activity

Construction

Visual and
audio dictionaries

CopyParallel data
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AX
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Activity
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JL

H
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Fig. 1. Flow of the proposed method

4.2. Dictionary Construction

Fig. 2 shows how to construct the source dictionary and the target
dictionary. In this paper, we use images recorded using a high-speed



camera, which made it possible for both the images and the audio to
have a high frame rate. For visual features, a two-dimensional Dis-
crete Cosine Transform (DCT) of lip motion images of the source
speaker’s utterance is used, and a zigzag scan is used to obtain the
1D-DCT coefficient vector. Then, a constant value was added to sat-
isfy the non-negativity constraint of NMF not to change the scale of
frame data [19]. In this paper, we employed STRAIGHT [31] for
feature extraction and speech synthesis, and use STRAIGHT spec-
trum for audio features.

STRAIGHT

Source
training speech

Alignment

AW

Parallel dictionaries

Spectral
envelope

Time
information

Source
training video

DCT

Image
spectrum

Visual
features

Audio
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Fig. 2. Dictionary construction

4.3. Locality Constraint [11]

Locality constraint is adopted to activities in this paper in order to in-
crease the sparsity. The activity is initialized with locality constraint
and then update by using (5).

The distance between an input vector and a basis of the source
dictionary is defined as follows:

∆j,l =
√

(xl −wj)2 (7)

where xl and wj denote the l-th frame of the input vector and the
j-th basis of the dictionary, respectively. N nearest bases are chosen
from all the bases.

Sl = nbest∆l(w1,w2, . . . ,wJ) (8)
= nbest∆l(W) (9)

where Sl denotes a set of bases which consists of N nearest bases
to the l-th input vector. The activity which relates to Sl is initialized
with a small value and the other activity is initialized with 0. Thus,
we can estimate activities which consist of N nearest bases.

5. EXPERIMENTAL RESULTS

5.1. Experimental Conditions

We recorded 26 utterances of clean continuous Japanese digit speech
of one Japanese male by using a high-speed camera. The texts of ut-
terances were taken from CENSREC-1-AV [32] database. Table 1
shows the contents of the database. We used 6 utterances (from a
total of 26 utterances) as test data. In closed experiments, 26 utter-
ances including test data were used for the dictionary construction.

The number of frames of each dictionary was 30,784. In open exper-
iments, 20 utterances, which do not include test data, were used for
the dictionary. The number of frames of each dictionary was 24,368.

Table 1. Contents of the database
number of digits total number of utterances

2 9
3 7
4 10

total 26

Audio and visual data were recorded at the same time in a quiet
room. The position of the camera was 65 cm from the speaker and
130 cm from the floor.

The frame rate of the visual data was 1, 000 fps and the image
size is 130×80. Fig. 3 shows examples of lip images recorded by the
high-speed camera. For input features, 200-dimensional DCT coef-
ficients of lip motion images of the source speaker’s utterance are
used. We introduced the segment features for the DCT coefficient,
which consist of its consecutive frames (the 2 frames coming before
and the 2 frames coming after). Therefore, the total dimension of
visual feature is 1,000.

Sampling frequency of target speech was 8kHz and the frame
shift was 1ms. Audio spectrum was extracted by STRAIGHT from
the training data. The number of dimension of audio spectrum was
513.

We conducted objective and subjective evaluations. In the ob-
jective evaluation, Mel-cepstrum Distortion (Mel-CD) between syn-
thesized and target speech is calculated. Mel-CD is calculated by the
following equation:

Mel-CD[dB] =
10

ln 10

√√√√2

24∑
d=1

(mcd − m̂cd)2 (10)

where mcd and m̂cd denote the d-th dimension of mel-cepstral co-
efficient of the target and synthesized speech, respectively.

In the subjective evaluation, we conducted a Mean Opinion
Score (MOS) test and a dictation test. In an MOS test, subjects
evaluated the synthesized voice for speech quality on a 5-point scale
(5: excellent, 4: good, 3: fair, 2: poor, 1: bad). In a dictation test,
subjects wrote down the converted utterances. These tests were
carried out with 7 subjects.

Fig. 3. Lip images

5.2. Results and Discussions

Fig. 4 shows the mel-cepstral distortions in the evaluation set as a
function of the locality. β was set to 1 in this evaluation. In the
closed experiment, the best result was obtained when the number of
bases (locality) was set to 50. As shown in this figure, the distor-
tion increased as the number of bases increased. We assume that this
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Fig. 4. Mel-cepstral distortion as a function of the locality
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Fig. 5. Mel-cepstral distortion as a function of β

is because an unnecessary basis is included when the locality is in-
creased. In the open experiment, the best result was obtained when
the number of bases was set to 500. As shown in this figure, the dis-
tortion increased as the number of bases decreased. We assume that
this is occurred due to the selection error of local bases.

Fig. 5 shows the mel-cepstral distortions in the evaluation set as
a function of β in (5). In this evaluation, the locality was set to 5.
As shown in this figure, there are no significant differences in these
distortions. We assume that this is because of locality-constraint.

Fig. 6 shows the results of the MOS test in the evaluation set as
a function of the locality. β was set to 1 in this evaluation. In the
closed test, the best score was obtained when the locality was 50. In
the open test, the best score was obtained when the locality was 5.
These results show the effectiveness of locality constraint.

Fig. 7 shows the results of the dictation test. β was set to 1 in
this evaluation. In the closed experiment, the recognition rate was
over 60% when the locality constraint was introduced. In the open
experiment, the recognition rate was about 50% when the locality
constraint was introduced. These results also show the effectiveness
of locality constraint.
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Fig. 6. MOS test as a function of the locality

!"

#!"

$!"

%!"

&!"

'!"

(!"

)!"

*!"

'" '!!" +,,"

!
"
#$
%
&
'(
$
&
)*
+
,"
)-
.
/!

0$#+1',2!

-./0" 1,-2/3"

Fig. 7. Recognition rate as a function of the locality

6. CONCLUSIONS

This paper proposed a lip-to-speech synthesis method that produces
speech from lip images without the voice, where lip images and
voices are stored as the source dictionary and the target dictionary,
respectively. Input images are represented by a linear combination of
the basis from the source dictionary. The selected bases are replaced
with the corresponding target basis and the speech is synthesized. In
this paper, we employed NMF using the β divergence and introduced
locality-constraint in order to increase the sparseness of the activity
matrix. Our objective and subjective evaluations show that our pro-
posed method effectively converted lip images to speech spectra and
the effectiveness of locality-constraint was confirmed.

Some problems remain with this method. The proposed method
requires high computational times to estimate activities. Virtanen et
al. [33] proposed an active-set method for NMF that effectively esti-
mates the activity matrix from the over-complete dictionary, and we
proposed VC using this method [34]. In future work, we will inves-
tigate the optimal number of bases and adopt an active-set method.
In this study, there was only one subject person, so in future experi-
ments, we will increase the number of subjects and further examine
the effectiveness of our method.



7. REFERENCES

[1] C. Veaux, J. Yamagishi, and S. King, “Using HMM-based
speech synthesis to reconstruct the voice of individuals with
degenerative speech disorders,” in Proc. Interspeech, pp. 1–4,
2012.

[2] K. Nakamura, T. Toda, H. Saruwatari, and K. Shikano,
“Speaking-aid systems using GMM-based voice conversion for
electrolaryngeal speech,” Speech Communication, vol. 54, no.
1, pp. 134–146, 2012.

[3] K. Nakamura, T. Toda, H. Saruwatari, and K. Shikano, “Speak-
ing aid system for total laryngectomees using voice conversion
of body transmitted artificial speech,” in Proc. Interspeech, pp.
148–151, 2006.

[4] H. McGurk and J. MacDonald, “Hearing lips and seeing
voices,” Nature, vol. 264, no. 5588, pp. 746–748, 1976.

[5] A. Verma, T. Faruquie, C. Neti, S. Basu, and A. Senior, “Late
integration in audio-visual continuous speech recognition,” in
Proc. ASRU, 1999.

[6] K. Palecek and J. Chaloupka, “Audio-visual speech recog-
nition in noisy audio environments,” in Proc. International
Conference on Telecommunications and Signal Processing, pp.
484–487, 2013.

[7] D. D. Lee and H. S. Seung, “Algorithms for non-negative ma-
trix factorization,” Neural Information Processing System, pp.
556–562, 2001.

[8] M. N. Schmidt and R. K. Olsson, “Single-channel speech sep-
aration using sparse non-negative matrix factorization,” in IN-
TERSPEECH, 2006.

[9] W. Dong, L. Zhang, G. Chi, and X. Wu, “Image deblurring
and super-resolution by adaptive sparse domain selection and
adaptive regularization,” IEEE Trans. on Image Processing,
vol. 20, no. 7, pp. 1838–1856, 2011.

[10] R. Takashima, T. Takiguchi, and Y. Ariki, “Exemplar-based
voice conversion in noisy environment,” in Proc. SLT, pp. 313–
317, 2012.

[11] R. Aihara, T. Takiguchi, and Y. Ariki, “Individuality-
preserving voice conversion for articulation disorders using
locality-constrained nmf,” in Proc. Workshop on Speech
and Language Processing for Assistive Technologies, pp. 3–8,
2013.

[12] C. Févotte, N. Bertin, and J. L. Durrieu, “Nonnegative matrix
factorization with the itakura-saito divergence. with applica-
tion to music analysis,” Neural Computation, vol. 21, no. 3,
pp. 793–830, 2009.

[13] S. Eguchi and Y. Kanno, “Robustifying maximum likelihood
estimation,” Tech. Rep., Instisute of Statistical Mathematics,
2001.

[14] C. Févotte and J. Idier, “Algorithms for nonnegative matrix
factorization with the beta-divergence,” Neural Computation,
vol. 23, no. 9, pp. 2421–2456, 2011.

[15] H. Sawada, H. Kameoka, S. Araki, and N. Ueda, “Efficient
algorithms for multichannel extensions of itakura-saito non-
negative matrix factorization,” in Proc. ICASSP, pp. 261–264,
2012.

[16] J. F. Gemmeke, T. Viratnen, and A. Hurmalainen, “Exemplar-
based sparse representations for noise robust automatic speech
recognition,” IEEE Trans. Audio, Speech, Lang. Process., vol.
19, no. 7, pp. 2067–2080, 2011.

[17] R. Aihara, R. Takashima, T. Takiguchi, and Y. Ariki, “Noise-
robust voice conversion based on sparse spectral mapping us-
ing non-negative matrix factorization,” IEICE Transactions on
Information and Systems, vol. E97-D, no. 6, pp. 1411–1418,
2014.

[18] R. Aihara, R. Takashima, T. Takiguchi, and Y. Ariki, “A pre-
liminary demonstration of exemplar-based voice conversion
for articulation disorders using an individuality-preserving dic-
tionary,” EURASIP Journal on Audio, Speech, and Music Pro-
cessing, vol. 2014:5, doi:10.1186/1687-4722-2014-5, 2014.

[19] K. Masaka, R. Aihara, T. Takiguchi, and Y. Ariki, “Multimodal
exemplar-based voice conversion using lip features in noisy en-
vironments,” in Proc. INTERSPEECH, vol. 1159-1163, 2014.

[20] A. Barbulescu, T. Hueber, G. Bailly, and R. Ronfard, “Audio-
visual speaker conversion using prosody features,” in
Proc. AVSP, 12th International Conference on Auditory-Visual
Speech Processing, pp. 11–16, 2013.

[21] K. Sawada, M. Takehara, S. Tamura, and S. Hayamizu,
“Audio-visual voice conversion using noise-robust features,” in
Proc. ICASSP, pp. 7899–7903, 2014.

[22] Y. C. Pati, R. Rezaiifar, and P. S. Krishnaprasad, “Orthogonal
matching pursuit: recursive function approximation with appli-
cations to wavelet decomposition,” in Proc. Signals, Systems
and Computers, vol. 1, pp. 40–44, 1998.

[23] I. Ramirez, P. Sprechmann, and G. Sapiro, “Classification and
clustering via dictionary learning with structured incoherence
and shared features,” in Proc. IEEE Conference on Computer
Vision and Pattern Recognition, pp. 3501–3508, 2010.

[24] F. Tao and C. Busso, “Lipreading approach for isolated digits
recognition under whisper and neutral speech,” in Proc. Inter-
speech, pp. 1154–1158, 2014.

[25] K. Noda, Y. Yamaguchi, K. Nakadai, H. G. Okuno, and
T. Ogata, “Lipreading using convolutional neural network,”
in Proc. Interspeech, pp. 1149–1153, 2014.

[26] B. Denby, T. Schultz, K. Honda, T. Hueber, and J. M. Gilbert,
“Silent speech interfaces,” Speech Communication, vol. 52, no.
4, pp. 270–287, 2010.

[27] E. Yamamoto, S. Nakamura, and K. Shikano, “Lip move-
ment synthesis from speech based on hidden markov models,”
Speech Communication, vol. 25, no. 1-2, pp. 105–115, 1998.

[28] F. Lavagetto, “Converting speech into lip movements: a mul-
timedia telephone for hard of hearing people,” IEEE Trans. on
Rehabilitation Engineering, vol. 3, no. 1, pp. 90–102, 1995.

[29] X. Zhuang, L. Wang, F. Soong, and M. Hasegawa-Johnson, “A
minimum converted trajectory error (mcte) approach to high
quality speech-to-lips conversion,” in Proc. INTERSPEECH,
pp. 1736–1739, 2010.

[30] T. Toda, A. Black, and K. Tokuda, “Voice conversion based
on maximum likelihood estimation of spectral parameter tra-
jectory,” IEEE Trans. Audio, Speech, Lang. Process., vol. 15,
no. 8, pp. 2222–2235, 2007.



[31] H. Kawahara and H. Matsui, “Auditory morphing based on an
elastic perceptual distance metric in an interference-free time-
frequency representation,” in Proc. ICASSP, vol. I, pp. 256–
259, 2003.

[32] S. Tamura, C. Miyajima, N. Kitaoka, K. Takeda, T. Ya-
mada, T. Takiguchi, S. Tsuge, K. Yamamoto, T. Nishiura,
M. Nakayama, Y. Denda, M. Fujimoto, S. Matsuda, T. Ogawa,
S. Kuroiwa, and S. Nakamura, “CENSREC-1-AV, an evalu-
ation framework for multimodal speech recognition,” Tech.
Rep. 7, SLP, 2010.

[33] T. Virtanen, B. Raj, J. F. Gemmeke, and H. Van Hamme,
“Active-set newton algorithm for non-negative sparse coding
of audio,” in Proc. ICASSP, pp. 3116–3120, 2014.

[34] R. Aihara, R. Ueda, T. Takiguchi, and Y. Ariki, “Exemplar-
based emotional voice conversion using non-negative matrix
factorization,” in Proc. APSIPA, 2014.


