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ABSTRACT
In voice conversion, sparse-representation-based methods
have recently been garnering attention because they are, rela-
tively speaking, not affected by over-fitting or over-smoothing
problems. In these approaches, voice conversion is achieved
by estimating a sparse vector that determines which dic-
tionaries of the target speaker should be used, calculated
from the matching of the input vector and dictionaries of the
source speaker. The sparse-representation-based voice con-
version methods can be broadly divided into two approaches:
1) an approach that uses raw acoustic features in the train-
ing data as parallel dictionaries, and 2) an approach that
trains parallel dictionaries from the training data. In our ap-
proach, we follow the latter approach and systematically es-
timate the parallel dictionaries using a joint-density restricted
Boltzmann machine with sparse constraints. Through voice-
conversion experiments, we confirmed the high-performance
of our method, comparing it with the conventional Gaussian
mixture model (GMM)-based approach, and a non-negative
matrix factorization (NMF)-based approach, which is based
on sparse representation.

Index Terms— Voice Conversion, Restricted Boltzmann
Machine, Joint Density, Sparse Representation, Parallel Dic-
tionary Learning

1. INTRODUCTION

Voice conversion (VC) is a technique that changes specific
information in the speech of a source speaker to that of a tar-
get speaker while retaining linguistic information. This tech-
nique has been applied to various tasks, such as speech en-
hancement [1], emotion conversion [2], speaking assistance
[3], and other applications [4, 5]. The most important role of
VC is that one can analyze and control the speaker identity in
a speech signal, and hence VC has been garnering attention
in multimedia signal processing as a fundamental tool [6].

Various statistical approaches to VC have been studied
so far, including those discussed in [7, 8]. Among these
approaches, the joint density Gaussian mixture model (JD-
GMM)-based mapping method [9] is widely used, and a num-

ber of improvements have been proposed [10, 11, 12, 13].
However, it is reported that the GMM-based approaches have
some problems related to over-fitting and over-smoothing
[14, 15, 16]. The problems come from the linear conversion
that aggregates adjacent data points to each Gaussian mode.
Sparse-representation-based approaches using non-negative
matrix factorization (NMF) [17] or unit selection (US) [15]
have, therefore, been proposed to alleviate such problems.

In sparse-representation-based VC, one obtains the target
speaker’s speech by estimating a sparse vector that determines
which dictionaries should be used. The sparse vector is cal-
culated by matching the source speaker’s input vector against
the dictionaries. Therefore, the pairs of dictionaries (called
parallel dictionaries) should be trained beforehand. In this ap-
proach, the converted speech quality mainly depends on the
accuracy when creating the parallel dictionary and when se-
lecting the appropriate dictionaries (estimating a sparse vec-
tor). Exemplar-based VC using NMF [18] uses the spectra in
the parallel training data as dictionaries. Therefore, although
it is not affected by the errors that occur when creating dic-
tionaries, it degrades conversion accuracy by the errors that
occur when estimating sparse vectors (a mismatch of activity
matrices of the source speaker and the target speaker). An-
other NMF-based VC method, in which parallel dictionaries
are trained from the training data so as to match their activity
matrices instead of using the exemplars as it is, has been also
proposed [19]. This approach decreases the errors that occur
by mismatching the activity matrices; however, it produces
errors in the training of parallel dictionaries in contrast.

The above-mentioned VC methods are based on linear
functions. Since our vocal tracts have non-linear shapes, a
non-linear function is a better representation for capturing
non-linear relationships between a source speaker’s speech
and target speaker’s speech. Several voice conversion meth-
ods based on non-linear functions can be found in [20] by De-
sai et al. (they employ multi-layer neural networks (NNs)), in
[21] by Ling et al. (they use a restricted Boltzmann machine
(RBM)), and in [22] by Wu et al. (they use a conditional re-
stricted Boltzmann machine (CRBM [23])). Nakashika et al.
also employed another non-linear approach that uses speaker-



dependent RBMs or CRBMs to capture speaker-specific fea-
tures [24, 25]. It has been reported that these graphical models
are better at representing the distribution of high-dimensional
observations with cross-dimension correlations than GMM in
speech synthesis [14] and in speech recognition [26]. Since
Hinton et al. introduced an effective training algorithm in
2006 [27], the use of deep learning rapidly spread in the field
of multimedia signal processing [27, 28, 29]

In this paper, we describe a non-linear voice conver-
sion method that utilizes a joint density RBM with sparse
constraints in order to effectively train parallel dictionar-
ies of source/target speakers in the framework of a sparse-
representation approach. An RBM is a bi-directional prob-
abilistic model that consists of a visible layer and a hidden
layer, characterized in that there is no connection among the
units in the same layer, but there exist connections among the
units in different layers. These connection weights (parallel
dictionaries) are trained in an unsupervised manner. In our ap-
proach, an RBM inputs a concatenated vector (parallel data)
of the source speaker’s and the target speaker’s acoustic fea-
tures, such as MFCC, that are aligned beforehand. By feeding
such vectors, the RBM trains co-occurrences of the source
speaker’s features and the target speaker’s features through
hidden units. Our approach is similar to Ling’s work [21].
While Ling’s approach alternatively used an RBM instead of
using GMM to capture the joint distribution, our approach
tries to train parallel dictionaries in sparse-representation-
based voice conversion. Nakashika’s works [24, 25] also used
RBMs (or deeper architectures) for each speaker to extract
speaker-specific features, while our approach feeds a concate-
nated vector of the speakers in the visible layer.

2. SPARSE REPRESENTATION FOR VC

In voice conversion, the system generally converts an acoustic
vector of the source speaker x ∈ RD into the target speaker’s
vector y ∈ RD. In sparse-representation-based voice con-
version, K pairs of the source speaker’s dictionaries Dx ∈
RD×K and the target speaker’s dictionaries Dy ∈ RD×K

(parallel dictionaries) are trained beforehand. Given an input
vector of the source speaker, the converted target speaker’s
vector y is obtained using the trained parallel dictionaries.
First, we calculate a sparse vector α ∈ RK , ‖α‖0 � K that
satisfies

x ≈ f(Dxα), (1)

and then we obtain the target speaker’s vector as follows:

y ≈ f(Dyα), (2)

where f(·) indicates an arbitrary gate function.
Most sparse-representation-based approaches use train-

ing exemplars without changes for the parallel dictionaries
Dx,Dy [30, 31, 18]. For the calculation of the sparse vec-
tor α, there are various approaches that can be used, such as

L1 normalization [30], K-nearest neighbors algorithm [31],
and sparse non-negative matrix factorization (NMF) [18]. In
[19], another approach using sparse NMF has been proposed
that uses trained parallel dictionaries so that the sparse vec-
tors for the source and the target are the same. Furthermore,
the above-mentioned sparse-representation-based voice con-
version methods are based on linear function (f(·) are linear
functions in Eqs. (1) and (2)).

3. PRELIMINARY

3.1. Restricted Boltzmann machine

A restricted Boltzmann machine (RBM) is an undirected
graphical model that defines the distribution of visible vari-
ables with binary hidden (latent) variables [32]. In litera-
ture dealing with a Gaussian-Bernoulli RBM (GBRBM [33]),
the joint probability p(v,h) of real-valued visible units v =
[v1, · · · , vI ]T , vi ∈ R and binary-valued hidden units h =
[h1, · · · , hJ ]T , hj ∈ {0, 1} are defined as follows:

p(v,h) =
1

Z
e−E(v,h) (3)

E(v,h) =

∥∥∥∥v − b2σ

∥∥∥∥2 − cTh− ( vσ2

)T
Wh (4)

Z =
∑
v,h

e−E(v,h), (5)

where ‖ · ‖2 denotes L2 norm. W ∈ RI×J , σ ∈ RI×1, b ∈
RI×1, and c ∈ RJ×1 are model parameters of the GBRBM,
indicating the weight matrix between visible units and hidden
units, the standard deviations associated with Gaussian visible
units, a bias vector of the visible units, and a bias vector of
hidden units, respectively. The fraction bar in Eq. (4) denotes
the element-wise division.

Because there are no connections between visible units
or between hidden units, the conditional probabilities p(h|v)
and p(v|h) form simple equations as follows:

p(hj = 1|v) = S
(
cj +

( v
σ2

)T
W:j

)
(6)

p(vi = v|h) = N
(
v | bi +Wi:h, σ

2
i

)
, (7)

where W:j and Wi: denote the jth column vector and the
ith row vector, respectively. S(·) and N (·|µ, σ2) indicate an
element-wise sigmoid function and Gaussian probability den-
sity function with the mean µ and variance σ2.

For parameter estimation, the following negative log-
likelihood of a collection of visible units is used as an evalu-
ation function.

LRBM = − log
∏
n

p(vn) = −
∑
n

log
∑
h

p(vn,hn) (8)

However, it is generally difficult to compute the exact gradi-
ent, contrastive divergence (CD) is used instead [27].
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Fig. 1. A joint density RBM for voice conversion. Dictionar-
ies of the source and the target speakers are connected to each
other via a hidden sparse vector α.

3.2. RBM with sparse constraints

Essentially, an RBM itself is capable of making hidden units
sparse, since there are no connections in the hidden layer.
However, if the number of the hidden units is not enough, they
sometimes turn to be non-sparse. In our approach, we employ
sparse constraints as in [34] to make the hidden units more
sparse. Introducing the sparse constraints, each parameter is
optimized so as to minimize the total cost LRBM + λLsp,
where λ is a hyper parameter that determines the strength of
the sparsity. The regularization term Lsp is defined as:

Lsp =
∑
j

|p− 1

N

∑
n

E[hnj |vn]|2, (9)

where N is the number of training data, and p is a constant
that controlls the sparseness (typically, p = 0.05 is used). As
Eq. (9) indicates, this regularization makes the average value
of hj given v close to the small value of p; consequently, h
becomes sparse.

4. PARALLEL DICTIONARY LEARNING USING A
JOINT DENSITY MODEL

Our voice conversion system uses a joint density RBM with
sparse constraints to train parallel dictionariesDx,Dy and es-
timate sparse vectors α at the same time as shown in Fig. 1.
As discussed in the previous section, an RBM is a two-layer
network that consists of a visible layer and a hidden layer,
characterized in that bi-directional connections exist only be-
tween visible and hidden units. As shown in Fig. 1, the RBM
that feeds a concatenated vector of source speaker’s features
x and target speaker’s features y can be regarded as a network
where a dictionary-selection weight (a sparse vector) αi con-
nects to both x and y with weights of ith dictionaries Di

x and
Di

y , respectively.
Given parallel training data (x,y), we define a joint prob-

Input: Dictionaries Dx, Dy , a source speaker’s vector x and
an initial target vector y0
Output: Estimated target speaker’s vector ŷ
Initialize: Set the initial values as ŷ = y0.

Repeat the following updates R times:

1. α̂ , E[α]p(α|x,ŷ) = S(DT
x (

x
σ2

x
) +DT

y (
ŷ
σ2

y
) + c)

2. ŷ , E[α]p(y|α̂) = Dyα̂+ by

Fig. 2. Iterative estimation algorithm of the target vector us-
ing a joint density RBM.

ability of x,y,α as follows:

p(x,y,α;Dx,Dy) =
1

Z
e−E(x,y,α;Dx,Dy) (10)

E(x,y,α;Dx,Dy) =

∥∥∥∥x− bx2σx

∥∥∥∥2 + ∥∥∥∥y − by2σy

∥∥∥∥2 (11)

−cTα−
(
x

σ2
x

)T

Dxα−
(
y

σ2
y

)T

Dyα

where Z =
∑
x,y,α e

−E(x,y,α) indicates a normalization
term, and c is a bias parameter vector of a dictionary-selection
weights. bx and σx indicate bias and deviation parameters of
the source speaker’s acoustic features, respectively, and by
and σy indicate bias and deviation parameters of the target
speaker’s features, respectively. The dictionariesDx,Dy (and
the other parameters) can be estimated by minimizing the cost
function L = LJDRBM + λLsp, where

LJDRBM = − log
∏
n

p(xn,yn)

= −
∑
n

log
∑
α

p(xn,yn,α;Dx,Dy). (12)

As discussed in Section 3, we can make practical use of an
approximation method (contrastive divergence) to calculate
the gradients.

When it comes to conversion, we estimate the target
speaker’s vector ŷ by repeating forward inference and back-
ward inference of an RBM as shown in Fig. 2. Given an
initial vector y0, we first calculate the expectation values of
dictionary-selection weightsα using the probability that each
dictionary is selected:

p(α = 1|x,y) = S(DT
x (
x

σ2
x

) +DT
y (
y

σ2
y

) + c). (13)

Secondly, the expectation values of y are calculated using α̂.
The conditional probability of y is given from backward in-
ference of an RBM as follows:

p(y|α) = N (y|Dyα+ by,σ
2
y). (14)



Repeating the above-mentioned procedures (estimation of
α and y) R times, we iteratively obtain the converted vector
ŷ. Although several approaches for determining the initial
vector y0 can be considered, we use the source feature vector
x for the initial values in this paper.

Similar to SMNMF (spectral mapping NMF [19]), our
voice conversion method optimizes the likelihood of the train-
ing data as well as the likelihood of the dictionary-selection
vector as shown in Eq. (10). The most obvious difference is
that our approach uses a non-linear function for estimating
a dictionary-selection vector as in Eq. (13), while SMNMF
still uses a linear function. Furthermore, while SMNMF is
restricted to input non-negative values, our approach can feed
real values without constraints. In particular, MFCC, which
tends to distribute monomodally, will go together with our
approach that assumes Gaussian-distributed inputs.

5. EXPERIMENTS

5.1. Conditions

In our experiments, we conducted voice conversion using the
ATR Japanese speech database [35], comparing our method
(joint density restricted Boltzmann machines with sparse
constraints, or “JDRBM+s”) with the conventional sparse-
representation-based voice conversion that uses exemplar-
based NMF [18], and spectral-mapping-based NMF [19] and,
for a reference, the well-known GMM-based approach (64
mixtures). From this database, we used a male speaker
(identified with “MMY”) and a female speaker (“FTK”) for
the source and target speakers, respectively. As an acous-
tic feature vector for our approach and GMM, we calcu-
lated 24-dimensional MFCC features from STRAIGHT spec-
tra [36] using filter-theory [37] to decode the MFCC back to
STRAIGHT spectra in the synthesis stage. For NMF-based
approaches, we used 513-dimensional vectors of STRAIGHT
spectra. The parallel data of the source/target speakers pro-
cessed by Dynamic Programming were created from 216
word utterances (58,426 frames) in the dataset, and were used
for the training of each method. For the objective test, 25
sentences (about 100 sec. long) that were not included in the
training data were arbitrarily selected from the database. The
joint density RBM was trained using gradient descent with a
learning rate of 0.01 and momentum of 0.9, with the number
of epochs being 200. We set the number of hidden units as
96. We changed the sparse-constraint strength λ as 0, 1, 10,
100, and evaluated their performance. We obtained the con-
verted vector with R = 10 iterations (already converged).
For spectral-mapping-based NMF, we changed the number
of bases k as 1,000 and 2,500. For exemplar-based NMF,
we compared the case where all training frames were used
(k = 58426) and the case where 1,000 frames were arbitrar-
ily used from the training data (k = 1000).

For the objective evaluation, we used SDIR (spectral dis-

tortion improvement ratio) to measure how the converted vec-
tor is improved to resemble the original source vector. The
SDIR is defined as follows:

SDIR[dB] = 10 log10

∑
d |Xt(d)−Xs(d)|2∑
d |Xt(d)− X̂t(d)|2

, (15)

where Xt(d), Xs(d) and X̂t(d) denote the dth original
target spectra, the source spectra and the converted spectra
(spectra obtained from the converted MFCC), respectively.
The larger the value of SDIR is, the greater the improvement
in the converted spectra. We calculated the SDIR for each
frame in the training data, and averaged the SDIR values for
the final evaluation.

5.2. Results and discussion

We summarize the experimental results of each method in
Table 1. As shown in Table 1, our approach outperformed
the other methods (λ = 10 performed best). The differences
between our approach and the NMF-based approach are the
types of input features and the gate functions in Eqs. (1) and
(2). The reason for the improvement is attributed to the fact
that our approach, which inputs real-valued data and uses
non-linear gate functions, is able to represent input features
better than the NMF-based approach. We obtained better re-
sults as the strength of sparsity increased, although the per-
formance degrades when we make the hidden units too sparse
(λ = 100). This is becasue if we make the hidden units
sparse, the obtained target vector ŷ becomes more clearer
and improved without having scrambled by a lot of dictio-
naries. Meanwhile, however, if we make the hidden units too
sparse, this not only makes it difficult to estimate dictionaries
precisely, but also vanishes activities of the dictionary selec-
tion in the conversion step (as shown in the bottom right in
Fig. 3). Fig. 3 shows an exmaple of expectation values of the
estimated hidden units. As shown in Fig. 3, the hidden units
gradually become sparse (almost all of the values in α are
zero) as the strength λ increases. One interesting point is that
even if we do not give any sparse constraints (i.e., λ = 0), the
hidden units are already sparse to some extent. This is due
to the fact that an RBM characteristically naturally makes the
hidden units sparse in the process where the model parameters
are estimated so that the hidden units do not capture redundant
information between each other.

6. CONCLUSION

This paper presented a VC method using a joint density RBM
with sparse constraints as an alternative tool of a sparse-
representation-based approach where only a few dictionar-
ies are used for the converted-voice generation. Our pro-
posed method demonstrated better performance compared
with the conventional sparse-representation-based approach
(spectral-mapping NMF and exemplar-based NMF) and the



Table 1. Performance of each method.

JDRBM+s (Proposed) Spectral mapping NMF Exemplar-based NMF GMM
Methods λ = 0 λ = 1 λ = 10 λ = 100 k = 1000 k = 2500 k = 1000 k = 58426 m = 64
SDIR [dB] 4.96 5.54 6.00 5.04 5.14 4.68 4.91 5.23 4.11

(λ=0)

(λ=10)

(λ=1)

(λ=100)

Fig. 3. Expectation values of the estimated α from a part of a sentence when the strength of the sparsity changed as λ =
0, 1, 10, 100. The vertical and horizontal axes indicate the index of hidden units and the time, respectively.

well-known GMM-based approach. When we compare the
results between our approach and the spectral-mapping NMF,
we could say that the non-linear conversion function without
non-negative constraints plays an important role in sparse-
representation-based VC. In the future, we will extend our
method to have a deeper architecture using a deep Boltzmann
machine or such, so that it captures more complex informa-
tion in the data.
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