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Abstract

We present in this paper an exemplar-based Voice Conversion
(VC) method using Non-negative Matrix Factorization (NMF),
which is different from conventional statistical VC. NMF-based
VC has advantages of noise robustness and naturalness of con-
verted voice compared to Gaussian Mixture Model (GMM)-
based VC. However, because NMF-based VC is based on par-
allel training data of source and target speakers, we cannot con-
vert the voice of arbitrary speakers in this framework. In this pa-
per, we propose a many-to-many VC method that makes use of
Multiple Non-negative Matrix Factorization (Multi-NMF). By
using Multi-NMF, an arbitrary speaker’s voice is converted to
another arbitrary speaker’s voice without the need for any input
or output speaker training data. We assume that this method is
flexible because we can adopt it to voice quality control or noise
robust VC.

Index Terms: voice conversion, speech synthesis, many-to-
many, exemplar-based, NMF

1. Introduction

Voice Conversion (VC) is a technique for converting specific
information in speech while maintaining the other informa-
tion in the utterance. One of the most popular VC applica-
tions is speaker conversion [1]. In speaker conversion, a source
speaker’s voice individuality is changed to a specified target
speaker’s so that the input utterance sounds as though a spec-
ified target speaker had spoken it. VC is also being used for as-
sistive technology [2], Text-To-Speech (TTS) systems [3], spec-
trum restoring [4], bandwidth extension for audio [5], and more.

Many statistical approaches to VC have been studied [1,
6, 7]. Among these approaches, the Gaussian Mixture Model
(GMM)-based mapping approach [1] is widely used. In this ap-
proach, the conversion function is interpreted as the expectation
value of the target spectral envelope. The conversion parame-
ters are evaluated using Minimum Mean-Square Error (MMSE)
on a parallel training set. A number of improvements in this ap-
proach have been proposed. Toda et al. [8] introduced dynamic
features and the Global Variance (GV) of the converted spec-
tra over a time sequence. Helander et al. [9] proposed trans-
forms based on Partial Least Squares (PLS) in order to pre-
vent the over-fitting problem associated with standard multi-
variate regression. However, over-smoothing and over-fitting
problems have been reported [9] in regard to these GMM-based
approaches because of statistical averages and the large number
of parameters. These problems degrade the quality of synthe-
sized speech.

In recent years, exemplar-based VC has been re-
searched [10, 11] because of its flexibility and the naturalness of
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converted voice. In [10, 12], we proposed exemplar-based VC
based on Non-negative Matrix Factorization (NMF) [13]. NMF
is a well-known approach for source separation and speech en-
hancement [14, 15, 16]. In our VC method, source exemplars
and target exemplars are extracted from the parallel training
data, having the same texts uttered by the source and target
speakers. The input source signal is expressed with a sparse rep-
resentation of the source exemplars using NMF. By replacing a
source speaker’s exemplar with a target speaker’s exemplar, the
original speech spectrum is replaced with the target speaker’s
spectrum. Because our approach is not a statistical one, we as-
sume that our approach can avoid the over-fitting problem and
create a more natural voice [17].

Moreover, our exemplar-based VC method has noise ro-
bustness [12]. The noise exemplars, which are extracted from
the before- and after-utterance sections in an observed signal,
are used as the noise dictionary, and the VC process is com-
bined with an NMF-based noise reduction method. On the other
hand, NMF is one of the clustering methods. In our exemplar-
based VC, if the phoneme label of a source exemplar is given,
we can discriminate the phoneme of the input signal by us-
ing NMF. In [18], we proposed assistive technology for people
who have articulation disorders by using this function of our
exemplar-based VC. NMF-based VC is also applied to multi-
modal VC [19]. Wu et al. applied a spectrum compression fac-
tor to NMF-based VC and improved the conversion quality [11].

In spite of these efforts, VC has still not been put into prac-
tical use. One reason for this is that conventional VC needs
a large amount of parallel training data between the source
and target speakers. In GMM-based VC, there have been ap-
proaches that do not require parallel data. Lee et al. [20] used
Maximum A Posteriori (MAP) in order to adapt training data.
Mouchtaris et al. [21] proposed non-parallel training for GMM-
based VC. Toda et al. [22] proposed eigen-voice GMM (EV-
GMM) for one-to-many VC and many-to-one VC in which the
source and target utterances are represented by a super vector of
the reference speakers. Ohtani et al. [23] expand EV-GMM to
many-to-many VC using a reference voice. Saito et al. [24] pro-
posed tensor representation for one-to-many GMM-based VC.
However, exemplar-based many-to-many VC has never been
proposed.

This paper proposes a many-to-many exemplar-based VC
approach using Multiple Non-negative Matrix Factorization
(Multi-NMF). Parallel dictionaries, which are needed in con-
ventional NMF-based VC, are replaced with dictionaries that
are represented by the dictionaries of many speakers. We as-
sume this method can be applied to voice quality control, noise-
robust VC, and assistive technology.

The rest of this paper is organized as follows: In Section 2,
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conventional one-to-one NMF-based VC is described. In Sec-
tion 3, our proposed method is described. In Section 4, the
experimental data are evaluated, and the final section is devoted
to our conclusions.

2. NMF-based Voice Conversion

In the exemplar-based approach, the observed signal is repre-
sented by a linear combination of a small number of bases. In
this VC method, each basis denotes the exemplar of the spec-
trum, and the collection of exemplar W and the weight vector
h; are called the ‘dictionary’ and ‘activity’, respectively. When
the weight vector h; is sparse, the observed signal can be repre-
sented by a linear combination of a small number of bases that
have non-zero weights.
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J represents the number of the frames. In this paper, we use
NMEF [13], which is a sparse coding method, in order to estimate
the activity matrix.

Fig. 1 shows the basic approach of our exemplar-based
VC, where D, L, and J represent the numbers of dimensions,
frames, and bases, respectively. Our VC method needs two dic-
tionaries that are phonemically parallel. W represents a source
dictionary that consists of the source speaker’s exemplars and
W represents a target dictionary that consists of the target
speaker’s exemplars. These two dictionaries consist of the same
words and are aligned with dynamic time warping (DTW) just
as conventional GMM-based VC is. Hence, these dictionaries
have the same number of bases.

A matrix of input source spectra V*® is decomposed into
the source dictionary W* and the activity matrix H® by using
NME. This method assumes that when the source signal and the
target signal (which are the same words but spoken by differ-
ent speakers) are expressed with sparse representations of the
source dictionary and the target dictionary, respectively, the ob-
tained activity matrices are approximately equivalent. Fig. 2
shows the activity matrices estimated from parallel dictionaries.
As shown in the figure, these activities have high energies at
similar elements. Therefore, a matrix of target spectra V* can
be constructed using the target dictionary W* and the activity
matrix of the source signal H® as shown in Fig. 1.
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Figure 1: One-to-one VC using NMF

3. Many-to-many Voice Conversion
Using Multi-NMF

3.1. Flow of the proposed method

Our proposed method is based on the following assumptions:
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Figure 2: Activity matrices for parallel utterances.

1. Spectra of arbitrary speaker are represented by a linear
combination of the basis of many speakers.

2. An activity matrix represents phoneme information
which is speaker independent.

Fig. 3 shows the flow of the proposed method. V*, V?,
V*, a®, at, H®, H, denote the matrix of input source spec-
tra, the matrix of the adaptation target speaker’s spectra, the
matrix of converted spectra, the source speaker’s weight vec-
tor, the target speaker’s weight vector, the activity matrix of
the source speaker, the activity matrix of the target speaker, re-
spectively. D, L, L', J denote the number of the dimension
of a spectrum, the frame of the source spectra, the frame of
the adaptive spectra, the frame of the dictionary, respectively.
WM ¢ RPXIXE) denotes the dictionary matrix, which con-
sists of the parallel exemplars of many speakers and K is the
number of speakers who are included in it. The superscript of
W™ means that it consists of the dictionaries of many speakers.
The k-th speaker’s dictionary is denoted by W ¢ RP*),

First, the matrix of input source spectra V* is represented
as follows based on the assumption 1,

K
Ve <Z azwﬁf> H®
k=1

where aj, denotes the k-th element of a®. We emphasize that
each speaker’s dictionary is multiplied by the same activity ma-
trix element of H® in 3.

Next, some frames of the target speaker spectra V' are used
as adaptive spectra, and the target speaker’s weight vector and
adaptive data activity matrix are estimated as a‘ and H?, re-
spectively.
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Finally, the converted spectra V! are constructed from
the estimated target speaker’s weight vector a’ and the source
speaker’s activity matrix H® based on the assumption 2.

K
V= (Z mv,@f) e
k=1

In this method, the dictionary consists of either male only
or female only spectra. Therefore, in cross-gender conversion,
WM in (3) is replaced with WM and W} in (4) and (5) is
replaced with Wi where W3 and WM denote the dictio-
naries of the source gender and the target gender, respectively.

&)

3.2. Multi-NMF

We are proposing Multi-NMF, which estimates a speaker vector
a € RUXTX) and an activity matrix H € R > from input



Step 1 : Estimate Source Speaker Vector and Activities
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Step 2 : Estimate Target Speaker Vector and Activities
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Figure 3: Many-to-many VC using Multi-NMF
spectra V- € R(P*D) and given dictionary WM e R(P*/xK)
The cost function of Multi-NMF is defined as follows,

K
d(V,Y " axWi'H) + A|[H]|x (6)
k=1

where the first term is the Kullback-Leibler (KL)-divergence
between V and Zszl ax W H, and the second term is the
L1-norm regularization term that causes the activity matrix to
be sparse. A represents the weight of the sparse constraint.

H and a are estimated by minimizing (6). The updating
rule is determined by adapting Jensen’s inequality '.
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where vq; denotes the element of V and .x and ./ denote
element-wise multiplication and division, respectively.

4. Experiments
4.1. Experimental conditions

We used the ATR Japanese speech database set C [25], which
contains of the speech of 10 males and 10 females. The utter-
ance of half of the males and the half of the females are stored
as training data and the rest are stored as test data. The sam-
pling rate was 12 kHz. We compared our method with conven-
tional one-to-one NMF-based VC and one-to-one GMM-based

IThe derivation of (7) and (8) is uploaded to http://www.me.
cs.scitec.kobe-u.ac.jp/aihara/Interspeech2015.
pdf
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VC, which use parallel data between the source and the target
speakers as training data. In each method, 50 parallel sentences
of each speaker were used for dictionary construction or train-
ing of GMM. In the proposed method, 2 sentences uttered by
the target speaker, which were not included in the test or train-
ing data were used as adaptation data.

In the proposed and conventional NMF-based methods, the
dimension number of the spectral feature was 2,565. It con-
sisted of a 513-dimensional STRAIGHT [26] spectrum and
its consecutive frames (the 2 frames coming before and the 2
frames coming after). The number of iterations of NMF and
Multi-NMF was 300 and A in (6) was set to 0.1.

In the conventional GMM-based method,
MFCC+AMFCC+AAMFCC is used as a spectral fea-
ture. Its number of dimensions is 60. The number of Gaussian
mixtures was set to 64, which is experimentally selected.
In this paper, in order to focus on the spectra conversion,
FO information was converted using parallel training data.
It was converted using conventional linear regression based
on the mean and standard deviation. The other information,
such as aperiodic components, was synthesized without any
conversion.

In order to evaluate our proposed method, we conducted
objective and subjective evaluations. For the objective evalua-
tion, 50 sentences that are not included in the training data were
evaluated. We used Mel-cepstrum distortion (MelCD) [dB] [8]
as a measurement of objective evaluations, which is defined as
follows,

24
MelCD = (10/log10),|2 > (mes™ — melf)?  (9)
d

where mc5°™ and mclf*" denote the d-th dimension of the con-
verted and target MFCCs.

The subjective evaluation was conducted on “speech qual-
ity” and “similarity to the target speaker”. For the subjective
evaluation, 25 sentences were evaluated by 10 Japanese speak-
ers. For the evaluation on speech quality, we performed a Mean
Opinion Score (MOS) test [27]. The opinion score was set to
a 5-point scale (5: excellent, 4: good, 3: fair, 2: poor, 1: bad).
On the similarity evaluation, the XAB test was carried out. In
the XAB test, each subject listened to the voice of the target
speaker. Then the subject listened to the voice converted by the
two methods and selected which sample sounded most similar
to the target speaker’s voice.

4.2. Results and discussions

Tables 1 to 4 show Mel-CD of male-to-male conversion,
female-to-female conversion, male-to-female conversion, and
female-to-male conversion, respectively. Source, Multi, NMF
and GMM denote Mel-CD between the target and the source
speech, converted by the proposed method, converted by one-
to-one NMF, and converted by one-to-one GMM, respectively.
As shown in the tables, although our proposed method includes
neither source nor target speaker’s spectra in the dictionaries,
the distortion between one-to-one VC methods and our pro-
posed many-to-many VC method is quite small. Moreover, in
some pairs of speakers, the distortion of the proposed method is
almost the same as that of one-to-one conversions (for example,
F5—F10 and F2—M2).

Fig. 4 shows the results of the MOS test on speech qual-
ity. M-to-M, F-to-F, M-to-F and F-to-M denote male-to-male



conversion, female-to-female conversion, male-to-female con-
version, and female-to-male conversion, respectively. In inter-
gender conversion, our proposed method obtained a better score
than conventional one-to-one NMF and GMM-based VC. These
results were confirmed by a p-value test of 0.05. In cross-gender
conversion, the difference between our proposed method and
one-to-one NMF-based VC is not significant. However, our
proposed method obtained the better score compared to one-
to-one GMM-based VC. These results were confirmed by a p-
value test of 0.05. We assume that the performance difference
between inter-gender VC and cross-gender VC is caused by the
difference between dictionaries. In our cross-gender conver-
sion, the dictionary, which we used in the activity estimation
of input speech, is different from that which we used in the tar-
get weight vector estimation, and this difference may impact the
assumption 2 in Section 3.

Fig. 5 shows the results of the XAB test on speaker similar-
ity between the proposed method and one-to-one NMF-based
VC. The score of our proposed method is slightly lower than
that of the one-to-one NMF-based method except for female-
to-female conversion. We assume that is because the dictio-
nary, which we used in our proposed method contains neither
the source speaker’s spectra nor the target speaker’s spectra.
Fig. 6 shows the results of the XAB test on speaker similarity
between the proposed method and one-to-one GMM-based VC.
The difference between our proposed method and the one-to-
one GMM-based method is not significant. This speaker simi-
larity test shows that our proposed many-to-many VC approach
effectively converts the individuality of the source speaker’s
voice to the target speaker’s voice.

Table 1: Mel-CD of male-to-male conversion [dB]

Source | Multi | NMF | GMM
M1—M6 4.76 4.16 4.06 3.93
M2—-M7 5.29 4.92 471 4.74
M3—M8 4.68 4.47 4.15 423
M4—-M9 4.59 4.18 3.92 3.92
M5—-M10 4.29 4.02 3.69 3.62
Mean 4.72 4.35 4.11 4.09
Table 2: Mel-CD of female-to-female conversion [dB]
Source | Multi | NMF | GMM
F1—F6 4.74 4.38 4.19 4.20
F2—F7 4.88 4.52 4.51 4.51
F3—F8 4.77 4.25 4.07 3.99
F4—F9 4.78 4.40 4.18 4.10
F5—F10 4.50 4.07 4.06 4.01
Mean 473 4.32 4.20 4.16
Table 3: Mel-CD of male-to-female conversion [dB]
Source | Multi | NMF | GMM
MI1—F1 5.46 4.59 4.32 4.59
M2—F2 5.05 4.59 4.32 4.37
M3—F3 5.22 4.44 4.24 4.27
M4—F4 5.89 4.95 4.83 4.73
M5—F5 5.05 4.39 4.04 4.06
Mean 5.34 4.57 4.35 4.41

5. Conclusions

This paper introduced exemplar-based many-to-many VC us-
ing multi-NMF. In this framework, the input speaker’s spectra
are represented by linear combinations of spectra from a dictio-
nary that contains the spectra of many speakers. Our proposed
Multi-NMF estimates the source speaker weight vector and its
activities from input spectra and a dictionary. A target speaker
weight vector is estimated from adaptation data and the target
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Table 4: Mel-CD of female-to-male conversion [dB]

Source | Multi | NMF | GMM
F1—M1 5.46 4.69 4.48 4.67
F2—M2 5.05 4.42 4.24 4.42
F3—M3 5.22 4.37 4.11 4.24
F4—M4 5.89 4.99 4.75 4.75
F5—M5 5.05 4.34 4.07 4.10
Mean 5.34 4.56 4.33 4.43
W Multi = NMF GMM
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speech is synthesized from the target speaker weight vector and
activities of input speech. We assume that Multi-NMF makes
it possible to decompose input speech into phonetic informa-
tion, which is estimated as activities and speaker information,
which is estimated as the speaker weight vector. Experimen-
tal results revealed that the conversion quality of the proposed
method is almost the same as that of conventional one-to-one
VC although our proposed method includes neither the source
speaker’s spectra nor the target speaker’s spectra.

In future work, we will apply our method to noisy environ-
ments and an assistive technology for people with articulation
disorders. Comparison between our method and other many-to-
many VC methods will also be a part of our future work. We
assume that the proposed method can be easily applied to voice
quality control by using regression of speaker weight vectors
and voice expression words. We also plan to research speaker
identification using the speaker weight vector.
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