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Abstract—We propose a novel and general framework, named
the multithreading cascade of rotation-invariant histograms of
oriented gradients (McRiHOG) for facial expression recognition
(FER). In this paper, we attempt to solve two problems about
high-quality local feature descriptors and robust classifying algo-
rithm for FER. The first solution is that we adopt annular spatial
bins type HOG (Histograms of Oriented Gradients) descriptors
to describe local patches. In this way, it significantly enhances
the descriptors in regard to rotation-invariant ability and feature
description accuracy; The second one is that we use a novel
multithreading cascade to simultaneously learn multiclass data.
Multithreading cascade is implemented through non-interfering
boosting channels, which are respectively built to train weak
classifiers for each expression. The superiority of McRiHOG
over current state-of-the-art methods is clearly demonstrated by
evaluation experiments based on three popular public databases,
CK+, MMI, and AFEW.
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I. INTRODUCTION

Facial expression recognition (FER) is a typical multi-class
classification problem in Affective Computing. Furthermore,
since it is one of the most significant technologies for auto-
analyzing human behavior, which can be widely applied to
various application domains. Therefore, the need for this kind
of technology in various different fields continues to propel
related research forward every year.

Nevertheless, there are still many difficulties, because tes-
tees in images usually own variable appearances and the wide
range of poses that they can adopt, in particular making
their heads appear in a invariant orientation, which is an
almost impossible task to overcome. Unfortunately, current
approaches of FER usually ignore these problems and do
not present a robust feature set and its corresponding robust
classifying framework that allows the expression to be discrim-
inated cleanly under these situations. Reviewing [1] makes it
clear that this situation has not been well improved. Doing a
further survey of the experimental reports in these works [2]-
[7], we also find that the best precision achieved by any of
these state-of-the-art methods is not more than 33.7%, when
evaluated by some much challenging databases (e.g., AFEW
[8]). Therefore, FER is still an extremely challenging task in
Affective Computing. The first need is a robust feature and
the matching high-quality training framework.
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In this paper, we propose a novel framework that adopts
robust feature representation for training the multithreading
boosting cascade. We adopt rotation-invariant HOG (Ri-HOG)
as features, which is reminiscent of Dalal et al.’s HOG [9].
However, in this paper, we noticeably enhance the conven-
tional HOG in rotation-invariant ability and feature extraction
speed. We carry out a detailed study of the effects of various
implementation choices in descriptor performance. We subdi-
vide the local patch into annular spatial bins to achieve spatial
binning invariance. Besides, we apply radial gradient to attain
gradient binning invariance, which is inspired by Takacs et
al.’s RGT (Radial Gradient Transform) [10].

The proposed learning model is derived from AdaBoost
[11], but it is a novel, multi-class, simultaneous cascade; i.e.,
a multithreaded one. There are many precursors who focus
on boosting cascade research, such as, BinBoost [12], joint
cascade [13] and SURF cascade [14] for facial detection,
soft cascade [15] for object detection, and HOG cascade for
detecting humans [16] efc. These are outstanding methods
derived from Viola-Jones (V-J) framework [11], but the same
as V-J framework, they only reached maturity, when used
as detection applications. Based on these algorithms, there
are seldom applications that succeed in FER, because current
cascade models lack the robustness that allows the training
framework to process simultaneous multi-class classifications
smoothly. Therefore, we call these cascade models as the
single-threaded boosting cascade, which is binary learning
model. This learning model limits the application range of
boosting training.

There is also another type of boosting training model (e.g.,
Multi-class AdaBoost [17], [18] and LUT-AdaBoost [19]-
[21]), which focuses on allowing the weak classifier to be
trained to fit complex distributions. In other words, these clas-
sifiers can achieve multi-class recognition. However, they did
not present an effective approach for improving the robustness
of their classifiers further. As far as we know, it is still a
challenging task using these methods because their algorithms
cannot appropriately organize the ensemble of weak classifiers.
Therefore, we summarize these approaches as the “thin”
multi-boosting training, which limits the recognition ability
of classifiers based on boosting training.

Differing from the single-threaded boosting cascade and
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Fig. 1.

Examples of facial expression recognition results.

the thin multi-boosting training model, we propose a novel
and robust cascade algorithm, called Multithreading Cascade,
to learn multiclass cascades with Ri-HOG simultaneously.
Multithreading Cascade is implemented through configuring
the AUC (Area under ROC curve) [22] of the weak classifier
for each data category into a real-valued lookup list. These
non-interfering lists are built into thread channels where
the related boosting cascade can train each data category
classifiers individually. In this way, boosting cascade-based
approaches can be trained to fit complex distributions and
can simultaneously process multi-class events much robustly.
In this paper, the proposed framework is applied to FER.
In experiments, the proposed framework is evaluated on
three public expression database, covering both of the lab-
controlled scenarios and real-world situations. Some examples
of expression recognition results are shown in Figure 1. The
experiments show that the proposed method can construct a
robust FER system whose results outperform the well-known
state-of-the-art methods on FER.

Our main contribution is that we develop a framework
(McRiHOG) that can simultaneously learn multiclass clas-
sifiers for FER. In so doing, we have these contributions:
1) Generally, the boosting classifier is trained as binary
classification models. We propose a multithreading cascade
learning model, which allows the multiple categories data
to be simultaneously trained on cascade learning model; 2)
The McRiHOG is excellent method for FER application. Its
performance experimentally outperforms many the state-of-
the-arts methods; 3) Derived from Takacs ef al.’s approach
[10], we use magnitudes of radial gradients to represent HOG
features,in this way, we can enhance the HOG features descrip-
tors in regard to invariant representation ability. These are very
important to those with closely related research interests.

In the remainder of this paper, we describe the proposed
method in Sect. II. Sect. III gives the detailed stages of process
in experiments and conclusions are drawn in Sect. IV.

II. PROPOSED METHOD

This section describes the proposed framework, which has
these ingredients: the Ri-HOG features for local patch de-
scription; logistic regression based weak classifiers, which are
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also combined with AUC as a single criterion for cascade
convergence testing; and multithreading cascade for fitting
multiplex categories boosting training. We separately discusses
these approaches in this section.

A. Feature description

HOG are feature descriptors, which are computed on a
dense grid of uniformly-spaced cells and use overlapping local
contrast normalization for improved accuracy. This features set
based on cells and blocks representation system is widely used
in object detection, especially human detection. The describ-
ing ability of HOG features set outperforms many existing
features [16], however, its robustness against image rotation
does not reach maturity. Therefore, there many researchers
have tried to improve the robustness of HOG. Currently, two
of the most popular and representative ones are 2D HOG [25]
and HOG 3D [7], which are interesting solutions to the rotation
problems.

Nevertheless, the bottleneck problems also exist in these
approaches: 2D HOG descriptor is inspired by Jhuang et al.’s
approaches [26] that use 2D Gabor-filter responses combined
with optical flow. Such dense representations avoid some of
the problems discussed above, but cannot solve these problems
completely. Moreover, it brings further more time complexity
because 2D HOG requires a region of interest (ROI) around
the task region, which is usually obtained by using either
a separate detector or background subtraction followed by
blob detection; Inspired by SIFT descriptor [27], HOG 3D
constructs a platonic solids system using auxiliary coordinate
system to achieve the intention of invariant feature representa-
tion. It is an interesting solution yet with high computational
time and memory cost. Although they further distribute their
task images (faces) over the 2D polar coordinates and make
all task images be congruent in order to reduce memory
cost, the computing speed is still a bottleneck. Furthermore,
HOG 3D have to rely on the integral videos [7], which limits
HOG 3D in some restricted application areas. Therefore, these
approaches cannot be considered as complete solutions to the
above problems.

In this paper, we adopt radial gradient to represent the
gradient for HOG descriptors, which is derived from Takacs et
al.’s rotation-invariant image features [10]. But different from
Takacs et al.’s approach, we only use the radial gradient to
replace the Gaussian gradient function of conventional HOG.
We subdivide the local patch into annular spatial cells (see Fig.
2(a)). How to calculate these descriptors is shown in Fig. 2.
In Fig. 2(b), V a point p in the circle ¢, the task is to compute
the radial gradient magnitude of point p (z,y). Decompose
vector g into its local coordinate system as (g7, g”t), by
projecting g into the r and ¢ orientations as shown in Fig. 2(b).
Because the component vectors of g in r and ¢ orientations
can be quickly obtained by r = ﬁ, t = Rzr, where
we can obtain the gradient g easily on the gradient filter. In
addition, Ry is the rotation matrix by angle 6. About why
the representation system based on radial gradient and annular
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(a) Annular spatial cells (b) Radial gradient transform

Fig. 2. Tllustration of rotation-invariant HOG descriptors.

spatial cells is rotation-invariant, please refer to Takacs et al.’s
work [10] for the detailed verification.

Since Takacs et al. focus on image tracking applications, the
speed is more important, they use Approximate RGT and ROC
curve to compute the feature descriptors [10]. However, in so
doing, it will decrease the distinctiveness of feature descriptors
for recognition applications. In order to keep the distinctive-
ness of feature descriptors for recognition application, we do
not follow Takacs et al.’s way to abandon gradient magnitudes,
cells, and blocks representation system. Therefore, essentially,
the feature (Ri-HOG) that we adopt here is an improved HOG
feature, but the approach proposed by Takacs et al. is a very
excellent and novel feature representation method for image
tracking applications, which cannot be considered as a type of
HOG feature. Ri-HOG persists and develops the discriminative
representation of conventional HOG features. Meanwhile, it
also can significantly enhances the descriptors in regard to
rotation-invariant ability. Simply, we use the following four
steps to extract Ri-HOG descriptors:

1. Subdivide the local patch into annular spatial cells as shown
in Fig. 2(a);

2. Calculate the radial gradient (g7, g7t) of each pixel in the
cell;

3. Calculate the gradient magnitudes and the orientations of
radial gradients using the Eq. 1:

(g7r)* + (9"1)%,

g
O(x,y) = arctan=——;
(z,y) = arc angTr

Mgrr(z,y) =

4. Accumulating the gradient magnitude of radial gradient for
each pixel over the annular spatial cells into 9 bins, which are
separated according to the orientation of radial gradient. In
this way, we can extract the feature descriptors from a dense
annular spatial bin of these uniformly spaced cells.

About the normalization, we tried all of 4 approaches listed
by Dalal et al. in [9]. In practice, Ly — Hys, Lo normalization
followed by clipping is shown working best. The recognition
template is 100 x 100 with 10 cells, and it allows the patch
size ranging from 50 x 50 pixels to 100 x 100 pixels. We slide
the patch over the recognition template with 5 pixels forward
to ensure enough feature-level difference. We further allow
different aspect ratio for each patch (the ratio of width and
height). The descriptors are extracted according to the order
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from the inside to the outside of cells. Hence, concatenating
descriptors in 10 cells together yield a 90-dimensional feature
vector.

B. Weak Classifier Construction

One hand, we build a weak classifier over each local patch
described by the rotation-invariant HOG descriptor, and pick
optimum patches in each boosting iteration from the patch
pool. On the other hand, we construct the weak classifier for
each local patch by logistic regression to fit our classifying
framework, due to that it is a linear classifier with probability.
Given a Ri-HOG feature [ over local patch, logistic regression
defines a probability model:

1
1+ exp(—qg(WTF + b))’

when ¢ = 1 means the trained sample is the positive sample of
current class, ¢ = —1 means negative samples, w is a weight
vector for the model, and b is a bias term. We will train the
classifiers on local patches from large-scale dataset. Assuming
in each boosting iteration stage, there are K possible local
patches, which are represented by Ri-HOG feature F, each
stage is a boosting training procedure with logistic regression
as weak classifiers. In that way, the parameters can be found
via minimizing the objective,

P(q|F, w) 2

K
> log(1 + exp(—au (W Fy + ) + Alwl,, 3
k=1

where A denotes tunable parameter for the regularzation term,
and ||w||, means L; norm of the weight vector. Note that it
is also applied to Ls-loss and Li-loss linear SVMs by well
known open source code LIBLINEAR [28]. Therefore, this
problem can be solved on algorithms in [28].

C. Multithreaded Cascade

1) Multithreaded Cascade Channel Construction: Assum-
ing there are total IV boosting iteration rounds, given weak
classifiers hl(") for category ¢ data, the strong classifier is
defined as Hi(N)(IE‘) = %22;1 hg") (F). In the round n,
we will build K weak classifiers [h{")(F),)]/_, for each
local patch in parallel from the boosting sample subset.
Meanwhile, we also test each model hg") (Fi) in combination
with previous n — 1 boosting rounds. In other words, we
test Hi("_l)(IF) + hgn)(Fk) for Hi(") (F) on the all training
samples, and each test model will produce a highest AUC
score [22], [29] J(H™V(F) + h{™ (Fy)). i.e.,

3

s —

K2

(n—1) (n)
pax J(H;T(F) + b (F)). )

This procedure is repeated until the AUC score is converged,
or the designed number of iterations NV is reached. Then, the
selected S; is set as a threshold to generate an AUC score
pool, which contains the values of J(H "™V (F)+h{" (F})) >
0.8 x S;. In this way, it will build an AUC score pool for each
one class of object.
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In order to learn multi-class classifiers simultaneously, we
adopt these AUC data to construct independent channels for
boosting learning. The details are summarized as follows:

1. Assuming AUC score pools have been normalized to
[0,1], we divide the range into M sub-range bins. Each bin
corresponds to a channel ID. In this way, we can obtain a
channel ID set C = {bin; = [(J&l),%] j=1 , M}
In each channel, we will build an independent boosting
model for training the classifiers which can recognize a
corresponding category task;

2. Set v = S;(F,z) and define the weak classifier h;(x) as
follows:

if w € C and x € {category i samples},

5
then h;(xz) = 2P(q|F,w) — 1. )
These will guarantee the precision of A is more than 0.5;
3. Given the characteristic function
(i) N 1 uNY =1
B (u,Y) = { 0 otherwise ’ ©)

where 7 € Y, and Y is defined as the label set of those
categories that can be recognized by the classifier h. This
function is used to check and ensure the categories among
the channel, classifier and sample are consistent;

4. Covering the characteristic function, finally, we can formally
express the weak classifier as:

M M

=>"> (2P(qlF,w) - 1) BU)(u,Y). (7

j=1i=1

Using the above approaches, M independent channels can
be constructed. Meanwhile, the classifier category is able
to be judged and auto-selected into the related channel. In
this way, we can learn the classifiers on Algorithm 1 and
train multithreaded boosting cascades simultaneously in their
training channels via Algorithm 2.

2) Learning Weak Classifiers: Like most existing multiclass
classification algorithms, our approach is crucially dependent
on the labeled data of sample space to learn the classifiers.
In this paper, we adopt this approach to combine with the
above constructed cascade channels to implement multiclass
classification. In our case, we denote the sample space as X
and the label set as Y. A sample of a multiclass and multilabel
problem is a pair (z,Y"), define Y (i) as

. 1if ieY
Y(’):{1 it gy ®)

where z € X, € Y,Y C Y. In order to avoid overfitting,
we restricted the number of used samples during training as
in [30]. In practice, we sampled an active subset from the
whole training set according to the boosting weight. It is
generally good to use about 30 x p samples of each class,
where p is multiple coefficient (Algorithm 1 step 3.a).
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Algorithm 1 Learning Boosting Classifiers on Ri-HOG.

Require:

1. Given: the number of label categories M and the overall sample
set S = {(z1,v1), -+, (z+,yr)}, where 7 is the number of the
samples;
2. Initialize the weight parameter wo for positive (labeled as “+”)
samples and negative (labeled as “-”) samples:

a. wg = 1/(M x 74) for those ¢ = 1;

b. wy =1/(M x 7_) for those ¢ = 1;

for (j =0, < N;j=j+1)do
a. Sampled 30 X p (in this paper, p = 3) positive samples and
30 X p negative samples from training set;
b. Parallel replace each Ri-HOG template to train a series of
logistic regression models [h; (Fx)]f_s;
c. In order to obtain the AUC score, calculate H\" " (F) +
h;i(Fx) on the best model of previous stage: 55"71)
hi(Fr);
d. Choose the best model Si(") which contains the best weak
classifier h;(F;), according to the Eq. 4;
f. Update weight

and each

wjexp(—gq; Y (i)hi (F;))
Z; ’

Wj41 =

where Z; is a normalization factor, on which it can make the
weight follow to > w® =1 and > w™ = 1;
g. If AUC value S is converged, break the loop;
end for
4. In order to ensure the overall AUC score to be the highest one,
test all learned models during the current iteration process:
for(y-Og<K]—]+1)do
it H" F;) > S then

a S = H}" 1)(]14‘) + hi(Fy);
b. Empty those unnecessary data to free the memory;
end if
end for

5. Output final strong model Hi("> for this stage.

3) Boosting Cascade Training: To the best of our knowl-
edge, almost all existing cascade detection frameworks are
trained based on two conflicted criteria, i.e. false-positive-
rate (FPR) f; and hit-rate (or recognition rate) r; for the
detection- error tradeoff. The overall FPR of a T'—stage cascade
is F = H _1 fj, while the overall hit-rate is R = H
Inspired by [22] and [14], here we introduce AUC as a smgle
criterion for cascade convergence testing, which will realize
adaptive FPR among different stages (details about literature
description for AUC, please refer to [22]). Hence, combined
with logistic regression based weak classifiers to adopt Ri-
HOG features, this approach can yield fast convergence speed
and cascade model with much shorter stages.

Within one stage, we did not need to give threshold for
intermediate weak classifiers. We just need to determine each
decision threshold 6#; for ¢—th emotional category in its
threading channel. In our case, using ROC curve, FPR of
each emotional category is easily determmed when given the
minimal hit-rate d(mm We decreased d; @ from 1 on the
ROC curve, until reaching the transit point dj = d(mm) The
corresponding threshold at that point is the desue ;. After
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Algorithm 2 Training Multithreaded Boosting Cascade
Require:

1. Over all FPR: Fi(") for i—th category data;

2. Minimum hit-rate per stage d\""™;

3. Current class samples: X;-*';

4. Non-current class samples: X ;

5. The number of sample/label categories: M,

Initialize: j = 0, FY) =1, DY) = 1;

for i =0;i < M;i=1i+1)do

while (K7 > F(™) do
1. j=j+1; ,
2. Train a stage classifier HZ.(J )(IF ) by samples of X* and
X" via approaches of subsection II-C1;
3. Evaluate the model Hl-(J )(IF) on the whole training set to
obtain ROC curve; )
4. Determine the threshold 95] ) by searching on the ROC
curve to find the point (di”), f1) such that dJ = d{™"™,
but when existing the mimimum one dl(-]> that follows to the
condition: d < d{™"™ set d\™"™ = dY to update the
minimal hit-rate; ) ]
5. Update: FV) = FU™Y x f0),
Dz(]> — leﬂfl) X dz(‘]);
6. Empty the set X ;
7. while (F7) > FY™Y and size |X}| # |X;|) do
Adopt current cascade detector to scan non-target images
with sliding window and put false-positive samples into X ;
end while
end while

end for ] i

8. Output the boosting cascade detector { ) > 6} and overall

training accuracy F' and D.

one stage of classifiers learning is converged via Algorithm 2,
we continue to train another one with false-positive samples
coming from scanning non-target images with partial trained
cascade. We repeat this procedure until the overall FPR reach
the goal.

III. EXPERIMENTS

In this section, we will show the details of dataset and
evaluation results. The proposed method is applied to FER.
We implemented all training and detection programs in C++
on RHEL (Red Hat Enterprise Linux) 6.5 OS on the PC with
Core 17-2600 3.40 GHz CPU and 8 GB RAM.

A. Databases and Protocols

The proposed framework is evaluated on three public

databases, i.e., CK+, MMI and AFEW, covering the lab-
controlled scenarios (CK+ and MMI) and the real-world one
(AFEW).
CK+ DB Itis a set of facial expression samples posed by 123
people. There are 327 sequences, which are found from 593
sequences to meet the criteria for 1 of 7 discrete emotions
(Anger, Contempt, Disgust, Fear, Happiness, Sadness, and
Surprise) based on FACS [23]. In our experiments, we divided
these samples into several groups for each expression by the
person-independent rule, and each group included 10 posers.
Person-independent 10-fold cross-validation had been done for
comparing with some outstanding current methods.
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(b)

Fig. 3. Top-3 local patches picked by training procedure in the green-red-blue
order on AFEW database.
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Fig. 4. (a) The number of weak classifiers at each cascade stage; (b) the
accumulated rejection rate over all stages.

MMI DB MMI is a public database that includes over
30 subjects in which female-male ratio is near 11:15. The
subjects’ age from 19 to 62, they are European, Asian or South
American efc. This database is considered to be more challeng-
ing than CK+, because some posers have worn accessories
such as glasses. In the experiments, we used all 205 effective
image sequences of 6 expressions from the MMI dataset.

AFEW DB The evaluation experiments have done using
AFEW [8], which is a much challenging task. All of the sets
in AFEW have been collected from movies to depict so-call
wild scenario. In this paper, we adopted its version of 2013,
which was used as the criteria database of EmotiW 2013 [1],
because the evaluation results of many state-of-the-art methods
are based on version 2013. We trained version 2013’s training
set and the results are reported on its validation set, which is
the same way as the the latest FER work [2] doing.

We used all training samples in AFEW training set and
collected training samples from CK+ and MMI according
to the person-independent 10-fold cross-validation rule. In
order to reduce the process time of training, the samples
from three datasets were trained together. In order to enhance
the generalization performance of boosting learning, we dealt
with the training samples by some transformations (mirror
reflection, rotate the images efc.), finally, the original samples
were increased by a factor of 64. In the training stages, the
training data of current processing expression were adopted
as positive sample data; the other expressions’ data were used
for negative data.
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TABLE I
RECOGNITION RESULTS ON CK+ AND MMI.

Accuracy on CK+ ( %)

Accuracy on MMI(%)

Method An [ Co | Di [ Fe | Ha | Sa | Su [Ave. || An | Di | Fe | Ha | Sa | Su [ Ave.
CLM [32] 70.1 | 524 [ 925 [ 720 | 942450 [ 936 | 744 || - | - | - | - | - | - | -
HOE [3] 764 | 654 | 83.6 | 73.3 | 92.1 | 88.6 | 92.8 | 82.3 || 464 | 583 | 33.2 | 62.6 | 60.8 | 65.1 | 555

LBP-TOP [4] | 82.2 | 77.8 | 91.5 | 72.0 | 986 | 57.1 | 97.6 | 824 || 58.1 | 563 | 53.6 | 78.6 | 469 | 50.0 | 57.2
ITBN [6] (15-flod) | 91.1 | 78.6 | 94.0 | 83.3 | 89.8 | 76.0 | 91.3 | 86.3 || 469 | 548 | 57.1 | 714 | 65.6 | 62.5 | 59.7
HOG 3D [7] | 844 | 77.8 | 949 | 68.0 | 100 | 75.0 | 98.8 | 85.6 || 61.3 | 53.1 | 393 | 78.6 | 43.8 | 550 | 552
LSH-CORF [3] | 713 | — | 90.8 | 790 | 92.6 | 90.5 | 96.6 | 86.8 || 59.6 | 71.4 | 623 | 68.9 | 70.3 | 75.1 | 61.8
3D LUT [21] | 763 | 35.1 | 605 | 73.8 | 91.0 | 482 | 92.8 | 68.2 || 43.3 | 553 | 56.8 | 714 | 282 | 77.5 | 472
3DCNN-DAP [31] | 1.1 | 66.7 | 96.6 | 80.0 | 98.6 | 85.7 | 96.4 | 87.9 || 645 | 62.5 | 50.0 | 85.7 | 53.1 | 57.5 | 62.2
STM [2] - [ - - - =T =T =—Jouu - [ =T =T =1T-=1T-=T71¢64

[ McRHOG __ | 94.3 | 829 [ 92.7 | 91.5 | 93.1 | 81.6 | 97.3 | 90.5 || 68.9 | 48.0 | 80.1 | 82.4 | 52.4 | 869 | 71.4 |

TABLE I TABLE III

RECOGNITION RESULTS ON AFEW.

Accuracy on AFEW (%)

Method An [ Di [ Fe | Ha | Sa [ Su [ ave.
HOE [5] 11.2 | 16.5 9.0 33.5 153 | 283 19.0
LBP-TOP [4] 11.7 | 19.6 | 179 | 423 | 23.8 | 33.6 | 24.8
HOG 3D [7] - - - - - - 26.9
LSH-CORF [3] | 23.1 12.8 | 38.6 9.7 21.1 10.9 194
3D LUT [21] 45.7 0 0 62.0 | 13.2 | 48.6 | 28.2
STM [2] - - - - - - 31.7
[ McRiHOG [ 68.2 [ 0 [ 48.1 [ 83.3 [ 32.0 [ 91.6 [ 53.6 ]

B. Speed Evaluation Results

Training Speed: We replaced 40 types of the local patches on
the 100 x 100 detection template as described in subsection
II-A. The proposed method used 377 minutes to converge at
the 16th iteration stage. The cascade detector contained 2, 394
classifiers of all categories, and only need to evaluate 1.5 HOG
per window. After training, we observed that the top-3 picked
local patches for FER laid in the regions of two eyes and
mouth. This situation is similar to Haar-based classifiers [21],
see the examples in Fig. 3.

More details for cascade of FER are illustrated in Fig. 4(a)
and Fig. 4(b), which include the number of weak learners in
each stage and the average accumulated rejection rate over
the whole cascade stages. It shows that the first 8 stages have
rejected 98% of the non-current class samples.

C. Recognition Results Comparison

The comparison methods were selected to represent the
state-of-the-art level of this field, which includes proposing for
the improvement of local spatiotemporal descriptors: such as
LBP-TOP [4], HOE [5], HOG 3D [7], which are very popular
for FER, while 3DCNN-DAP [31] and STM [2] are the latest
ones; also including those methods that focus on enhancing
the robustness of their classifying frameworks or making the
frameworks can be encoded robustly, like, ITBN [6], 3D LUT
[21] and LSH-COREF [3] efc. For fair comparison with them,
we used the same databases, which were evaluated via the
standardized items what they had done.

Table I and Table II compares our method with these state-
of-the-art methods. Furthermore, almost of these meothods
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AVE. PRECISION USING DIFFERENT FEATURES.

Database Precision of feature (%)
SIFT | SURF | Haar | HOG || R-HOG
CK+ 82.6 72.2 68.6 71.3 90.5
MMI 65.4 46.0 42.2 58.8 71.4
AFEW 41.5 35.8 17.3 324 53.6

were conducted using their released codes and the parameters
had been tuned to better-adapt for our experiments. However,
about some methods, because we cannot obtain their source
codes until now (e.g. STM [2] and 3DCNN-DAP [31], etc.),
thus, we have to cite the reported results from the related
works. The precisions of our framework (McRiHOG) were
90.5% and 71.4% using CK+ and MMI, and 48.6% on AFEW.
The state-of-the-art levels were improved 6% and 21.9%
respectively by the proposed framework on MMI and AFEW.
In addition, the recognition speed of the proposed framework
reached 38 frames per second (FPS).

To date, all the necessary experiments have been carried
out, but we still have a query why we have to adopt Ri-
HOG as features. The reason is shown in Table III; i.e, it
dominates others on the accuracy. Meanwhile, its recognition
speed can meet the real-time recognition. However, adopting
SIFT as features, the real-time recognition is an impossible
task (speed: only 12 FPS), although the performance of the
proposed framework with SIFT is also quite excellent.

IV. CONCLUSION

In this paper, we have proposed a novel cascade framework
(McRiHOG) for robust FER. The main contribution in this
paper is that: we propose a multithreading cascade learning
model, which allows the multiple categories data to be simul-
taneously trained on cascade learning model. The concurrency
of multithreaded learning model can extend the application
range of cascade, which is significant to the related imaging
industries. We have used three very popular and representative
public databases in FER research field, to experimentally
confirm the validity of the proposed method. About the future
work, we will attempt to study the question about how does the
feature representation error impact on recognition frameworks.
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