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ABSTRACT

Our research focuses on the study of effective feature descrip-
tion and robust classifier technique, proposing a novel learn-
ing framework, which is capable of processing multiclass ob-
jects recognition simultaneously and accurately. The frame-
work adopts rotation-invariant histograms of oriented gradi-
ents (Ri-HOG) as feature descriptors. Most of the existing
HOG techniques are computed on a dense grid of uniformly-
spaced cells and use overlapping local contrast of rectangular
blocks for normalization. However, we adopt annular spatial
bins type cells and apply the radial gradient to attain gradient
binning invariance for feature extraction. In this way, it sig-
nificantly enhances HOG in regard to rotation-invariant abil-
ity and feature description accuracy; The classifier is derived
from AdaBoost algorithm, but it is ameliorated and imple-
mented through non-interfering boosting channels, which are
respectively built to train weak classifiers for each object cat-
egory. In this way, the boosting cascade can allow the weak
classifier to be trained to fit complex distributions. The pro-
posed method is valid on PASCAL VOC 2007 database and
it achieves the state-of-the-arts performance.

Index Terms— multithreading AdaBoost, Ri-HOG, AUC

1. INTRODUCTION

Object recognition is one of the most crucial components in
computer vision. The need for this technology in various dif-
ferent fields continues to propel related researches forward
every year. Therefore, its performance has been improved
substantially in recent years [1, 2, 3, 4, 5, 6]. The objective
of this research is to propose a novel learning framework in-
cluding high-quality local feature descriptors and robust clas-
sifying algorithm, which are often separately researched for
object recognition by the precursors. However, we attempt
to consider them as the component of a learning framework
and combine them together to develop a novel multi-object
recognition method. The proposed framework is a robust and
simultaneous system and it experimentally outperforms above
cited methods, which we briefly review here first.

In this paper, we adopt rotation-invariant histograms of
oriented gradients (Ri-HOG) as feature descriptors. It is well
known that HOG [7, 8] is a useful tool for object recogni-

tion, but the rotational robustness of many algorithms based
on HOG does not reach the mature level. In order to ad-
dress this problem, we subdivide the local patch into annular
spatial bins (see Fig 2(a)) to achieve spatial binning invari-
ance. Besides, we apply the radial gradient transform (RGT)
to attain gradient binning invariance for feature extraction.
The approach is derived from the theory of polar coordinate,
which is quite different from previous HOG features in the
way that blocks are constructed and cells’ gradients are calcu-
lated. In this way, it can significantly enhance HOG in regard
to rotation-invariant ability and feature descripting accuracy.

The proposed learning model is derived from AdaBoost
[9], but it is a novel, multi-class, simultaneous cascade; i.e.,
a multithreaded one. It is implemented through configuring
the AUC (Area under ROC curve) [10] of the weak classi-
fier for each object category into a real-valued lookup list.
These non-interfering lists are built into thread channels for
the boosting cascade of each object category. In this way,
boosting cascade-based approaches can be trained to fit com-
plex distributions and can simultaneously process multi-class
events considerably more robustly.

The main contribution of this paper is the novel learn-
ing framework for multi-object recognition, by addressing the
both above approaches. For evaluation, experiments are car-
ried out on PASCAL VOC 2007 and the proposed method is
compared with some well-known methods. The results show
our method achieves the state-of-the-arts performance.

2. PROPOSED METHOD

This section describes the proposed framework, which has
these ingredients: the Ri-HOG features for local patch de-
scription; logistic regression based weak classifiers, which are
also combined with AUC as a single criterion for cascade con-
vergence testing; and multithreading cascade for fitting mul-
tiplex categories boosting training.

2.1. Feature Description

Background and problems: HOG are feature descriptors,
which are computed on a dense grid of uniformly-spaced
cells and use overlapping local contrast normalization for im-
proved accuracy. This features set based on cells and blocks
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(a) The original block-size image

(b) Image (a) rotated clockwise 90°

Fig. 1. Analyzing the robustness of conventional HOG de-
scriptors in regard to image rotation.

representation system is widely used in object detection, es-
pecially human detection. The describing ability of HOG
features set outperforms many existing features [8], however,
its robustness against image rotation does not reach maturity.
Here one direct evidence is that the HOG feature is seldom
applied to object tracking or image retrieval successfully.
Giving a more scientific reason, see Fig. 1 for an example.
Supposing Fig. 1(a) is an image with HOG block size, there
are 4 cells in the block. Fig. 1(b) is an image of Fig. 1(a)
after making a quarter turn. HOG features are extracted from
the two images individually. If the histogram of oriented
gradients obtained from the regions 1, 2, 3, and 4 are sev-
erally denoted as x1, w2, x3, T4, then, the HOG features
extracted from Fig. 1(a) and Fig. 1(b) are (x1,x2,x3,z4)
and (x3,x1, x4, o) respectively. This means that the rotation
of image accompanies easily with the change of its HOG
descriptors. Hence, we have to substantially enhance the
robustness of HOG descriptors. Otherwise applications of
HOG features will be limited in some narrow ranges.

Our approach: Now, the question is how to significantly
improve the robustness of conventional HOG. In this paper,
we use annular spatial cells to replace rectangular ones, fur-
thermore, these cells are computed on a dense radial gradients
as feature descriptors to achieve the goal of making HOG be
rotation-invariant. How to calculate these descriptors? See
Fig. 2(b), V point p in circle ¢, the task is to compute the ra-
dial gradient magnitude of point p (x,y). Decompose vector
g into its local coordinate system as (g7r, g7t), by projecting
g into the r and ¢ orientations as shown in Fig. 2(b). Because
the component vectors of g in r and ¢ orientations can be ob-
tained by r = ﬁ and t = R=r quickly, and we can obtain
the gradient g easily on the gradient filter. In addition, Ry is
the rotation matrix by angle 6.

The radial gradient is derived from Takacs et al.’s ap-
proach [11]. Nevertheless, since Takacs ef al. focus on im-
age tracking applications, the speed is more important, they
use Approximate RGT and ROC curve to compute the fea-
ture descriptors [11]. However, in so doing, it will decrease
the distinctiveness of feature descriptors for recognition ap-
plications. In order to keep the distinctiveness of feature de-
scriptors for recognition application, we do not follow Takacs

(a) Annular spatial cells (b) Radial gradient transform

Fig. 2. Illustration of rotation-invariant HOG descriptors.

et al.’s way to abandon gradient magnitudes, cells, and blocks
representation system. Therefore, essentially, the Ri-HOG is
an improved HOG feature, but Takacs et al.’s method is a
novel and excellent feature representation method for image
tracking applications, which cannot be considered as a type
of HOG feature. Ri-HOG persists and develops the discrim-
inative representation of conventional HOG features. Mean-
while, it also can significantly enhance the descriptors in re-
gard to rotation-invariant ability. Simply, we use the follow-
ing four steps to extract Ri-HOG descriptors:

1. Subdivide the local patch into annular spatial cells as shown
in Fig. 2(a);

2. Calculate RGT (g%'r, g7't) of each pixel in the cell;

3. Calculate the gradient magnitude and the orientation of
RGT using the Eq. 1:
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4. Accumulating the gradient magnitude of radial gradient for
each pixel over the annular spatial cells into 9 bins, which are
separated according to the orientation of radial gradient. In
this way, we can extract the feature descriptors from a dense
annular spatial bin of these uniformly spaced cells.

Block normalization: We tried all of 4 normalization ap-
proaches listed by Dalal et al in [7]. In practice, Lo — Hys,
L5 normalization followed by clipping is shown working best.
The recognition template is 100 x 100 with 10 cells and each
cell includes 9 bins. It allows the feature patch size ranging
from 50 x 50 pixels to 100 x 100 pixels. We slide the patch
over the recognition template with 5 pixels forward to ensure
enough feature-level difference. We further allow different
aspect ratio for each patch (the ratio of width and height).
The descriptors are extracted according to the order from the
inside to the outside of cells. Hence, concatenating features
in 10 cells together yield a 90-dimensional feature vector.

Now, we still have the question why this feature is
rotation-invariant. As shown in Fig. 2 (b), assuming the
local patch has been rotated by an any angle 6. It generates
a new gradient system: point p — p/, Rgp = p'; Rer =



r'; Rot =t'; Rgg = g'. We can verify the coordinates of the
gradient in point p’ can be expressed by (g7r, g7't):

(g7, g"t') = (Reg)" Ror, (Rog)™ Rot)

= (¢" R} Ror, g" RY Rot) )
= (g"r,g"t).

All rotated points in the local patch also can obtain their
coordinates of the gradient from the corresponding original
points, because all gradients are rotated by the same angle
0, they are one-to-one mapping. Thus, the set of gradients
on any given circle or annular spatial bin centered around the
patch is invariant.

2.2. Weak Classifier Construction

In our previous work [12], we have proposed a look up table
model to make AdaBoost be able to train multi-class classi-
fiers simultaneously. But the probability model for the weak
classifier was simply calculated on Gaussian function based
on Haar-like feature distribution. These lead to low boost-
ing convergence speed and accuracy. In this paper, we build
a weak classifier over each local patch described by the Ri-
HOG descriptor, and pick optimum patches in each boosting
iteration from the patch pool. Meanwhile, we construct the
weak classifier for each local patch by logistic regression to
fit our classifying framework, due to its linear classifier with
probability. Given a HOG feature [ over local patch, logistic
regression defines a probability model:

1
P(q|F,w) = , 3
(d] ) 1+ exp(—q(wTF + b)) )
when ¢ = 1 means the trained sample is the positive sam-
ple of current class, ¢ = —1 means negative samples, w is a

weight vector for the model, and b is a bias term. We will train
the classifiers on local patches from large-scale dataset. As-
suming in each boosting iteration stage, there are K possible
local patches, which are represented by Ri-HOG feature F,
each stage is a boosting training procedure with logistic re-
gression as weak classifiers. In that way, the parameters can
be found via minimizing the objective,

K

> log(1+ exp(—qr (W Fi + ) + Mwl,. @)
k=1

A denotes tunable parameter for the regularzation term, and
[wl|,, means L, norm of the weight vector, p = 1 or 2 [13].
We can solve this question on open source LIBLINEAR [13].

2.3. Multithreading Cascade Implementation

In this paper, we have ameliorated our previous approach [12]
using the AUC of the weak classifier and construct multi-
threaded type training channels to train multi-class classifiers

simultaneously. Indeed, our multithreading cascade algo-
rithm is a good way to implement Real AdaBoost [14, 15].
Generally, the variants of Real AdaBoost are the same with
Gentle AdaBoost [16], namely, the base learner fits a regres-
sion function over training data, and outputs a real value.
Assuming there are M object categories in the training sam-
ple set, given weak classifiers hg") for category 7 object, the
strong classifier is defined as Hi(N)(IF) =% 25:1 hl(.n) (F).

Assuming there are total /N boosting iteration rounds, in
the round n, we will build K weak classifiers [h(n)(IFk)]k 1
for each local patch in parallel from the boosting sample sub-
set. Meanwhile, we also test each model hgn) (Fy) in combi-
nation with previous n — 1 boosting rounds. In other words,
we test H"~ () + h{"™ (Fy,) for H™ (F) on the all train-
ing samples, and each test model will produce a highest AUC
score [10, 17] J(H""(F) + 1\ (F})). iee.,

S = max J(H"VE) +HOE). O

This procedure is repeated until the AUC score is converged,
or the designed number of iterations IV is reached. Then,
the selected .S; is set as a threshold to generate an AUC

score pool, which contains the values of J(H, (n= 1)(IE“) +

hz(- )(Fk)) > 0.8 x S;. In this way, it will build an AUC score
pool for each one class of object.

In order to learn multi-class classifiers simultaneously, we
adopt these AUC data to construct independent channels for
boosting learning. The details are summarized as follows:

1. Assuming AUC score pools have been normalized to [0, 1],
we divide the range into M sub-range bins. Each bin corre-
sponds to a channel ID. In this way, we can obtain a channel
ID set C = {bin; = [(JMU7 £li= ,M}. In each
channel, we will build an independent boostmg model for
training the classifiers of a corresponding object category;

2. Set v = S;(F,x) and define the weak classifier h;(x) as
follows:

ifu € Candx € {category i samples},

6
then h;(z) = 2P(q|F,w) — 1. ©
These will guarantee the precision of A is more than 0.5;
3. Given the characteristic function
(,3) o 1 uNY =1
BT (w,Y) = { 0 otherwise ’ @

where i € Y, and Y is defined as the label set of those cat-
egories that the classifier h can recognize. This function is
used to check and ensure the categories among the channel,
classifier and sample are consistent;
4. Covering the characteristic function, finally, we can for-
mally express the weak classifier as:

M M

- ZZ 2P(q|F,w) — 1) BU)(u,Y).  (8)
j=1i=1



Table 1. Comparison with state-of-the-art methods on PASCAL VOC 2007 database.

Accuracy of different object-category items (%)

= % £ £ 2 2 58 5 £ % &8 £ £ B L £ £ % EEZ map
UCI[1] 28.8 56.2 3.2 14.2 29.4 38.7 48.7 124 16.0 17.7 24.0 11.7 45.0 394 35.5 152 16.1 20.1 34.2 354 27.1
DPM [6] 33.2 60.3 10.2 16.1 27.3 54.3 58.2 23.0 20.0 24.1 26.7 12.7 58.1 48.2 432 12.0 21.1 36.1 46.0 43.5 33.7
LEO [2] 294 558 94 143 28.6 44.0 51.3 21.3 20.0 19.3 25.2 12.5 504 384 36.6 15.1 19.7 25.1 36.8 39.3 29.6
DSO [4] 32.5 60.1 11.1 16.0 31.0 50.9 59.0 26.1 21.2 26.5 254 16.4 61.7 48.3 42.2 16.1 28.2 30.1 44.6 46.3 34.7
CA [3] 34.5 61.1 11.5 19.0 22.2 46.5 58.9 24.7 21.7 25.1 27.1 13.0 59.7 51.6 44.0 19.2 244 33.1 48.4 49.7 34.8
HoPS [5] 37.0 60.7 11.2 18.6 27.8 54.5 59.1 26.9 20.5 25.8 29.0 15.3 59.9 49.8 43.0 13.4 23.2 38.4 48.8 45.1 354
Ours 32.6 61.5 5.6 11.3 26.1 54.5 61.7 15.2 20.0 16.2 25.8 12.5 59.5 52.2 47.1 10.6 19.7 20.1 52.0 50.1 37.9

Using the above approaches, M independent channels can
be constructed. Meanwhile, the classifier category is able to
be judged and auto-selected into the related channel. In this
way, we can train the classifiers of each expression simultane-
ously in its training channel via boosting cascade. In order to
improve boosting convergence speed and accuracy, we do not
use the source code of Open CV, but using the released codes
of Li et al’s cascade model to adopt Ri-HOG and implement
our boosting cascade in each channel.

3. EXPERIMENTS

Databases and Implementation Details: Our framework is
implemented in C++ on the PC with Core i7-2600 3.40 GHz
CPU and 8 GB RAM. In this paper, experiments are evaluated
on PASCAL VOC 2007 dataset [18], which includes 9,963
images of 20 different object classes, containing 5,011 train-
ing images and 4,952 testing images. It is the most popular
dataset for object detection/recognition and many evaluation
experiments of state-of-the-art methods are carried out on it.
But note that it is very difficult to improve the results on this
dataset. The latest top results are only slightly different.

Fig. 3. Top-2 patches picked by training procedure in the red-
green order: (a) the example on car object (c) the example
on people task (b) the picked image regions of (a) and (b)
described by our Ri-HOG descriptors.

Experimental results The proposed method used 265 min-
utes to converge at the 12th boosting iteration stage. The cas-
cade detector generated 5, 994 classifiers of all 20 categories.
Only needing to evaluate average 1.3 patches per window (the

example is illustrated in Fig 3), the classifier can recognize
one object category. On the contrary, 8-bin T2 SURF fea-
ture [19, 20] needs average 3 patches; Our previous work [12]
requires average 37.3 Haar-like feature patches per window.
Hence, the description ability of Ri-HOG efficiently outper-
forms the other local features on our framework. But the rea-
son why we have to develop Ri-HOG as the feature of our
framework is not only the describing efficiency, but also that
it dominates others on the accuracy: the mean average preci-
sion (mAP) of Ri-HOG, the conventional HOG, SURF, SIFT
[21], Haar-like on PASCAL VOC 2007 dataset are 37.9%,
28.1%, 24.6%, 29.4% and 19.7% respectively. Indeed, the
proposed framework with SIFT features also can obtain quite
good recognition results. However the SIFT’s version is not
the ideal one, because its recognition speed is only 16 frames
per second (FPS), which would limit some real-scene appli-
cations.

In Table 1, experimental results are carried out on com-
parisons of our approach and six state-of-the-art methods, i.e.,
UCI [1], DPM [6], LEO [2], DSO [4], CA [3], HoPS [5]. Our
method achieves the mAP of 37.9%, which is highly competi-
tive to these methods 27.1% [1], 33.7% [6], 29.6% [2], 34.7%
[4], 34.8% [3], 35.4% [5]. Therefore, the proposed frame-
work reaches the state-of-the-art performance. In addition,
the average recognition speed of the proposed framework can
reach 42.8 FPS.

4. CONCLUSIONS

In this paper, we have proposed a novel cascade framework
for multiclass objects recognition. The main contribution of
this paper is that we present a novel variant of HOG, which
has a simple feature extraction system and robust feature de-
scriptors. This is important to those with closely related re-
search interests. Meanwhile, we have developed AdaBoost
for simultaneously and robustly computing, which can extend
the application range of cascade. About the further work, we
will try to apply Ri-HOG to image retrieval; and we also at-
tempt to study the question of further reducing cascade stages
and descriptors extracting speed, which would help to im-
prove the boosting convergence speed.
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