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ABSTRACT

In this paper, we investigate the recognition of speech ut-

tered by a person with an articulation disorder resulting from

athetoid cerebral palsy based on a robust feature extraction

method using pre-trained convolutive bottleneck networks

(CBN). Generally speaking, the amount of speech data ob-

tained from a person with an articulation disorder is limited

because their burden is large due to strain on the speech mus-

cles. Therefore, a trained CBN tends toward overfitting for a

small corpus of training data. In our previous work, the ex-

perimental results showed speech recognition using features

extracted from CBNs outperformed conventional features.

However, the recognition accuracy strongly depends on the

initial values of the convolution kernels. To prevent overfit-

ting in the networks, we introduce in this paper a pre-training

technique using a convolutional restricted Boltzmann ma-

chine (CRBM). Through word-recognition experiments, we

confirmed its superiority in comparison to convolutional net-

works without pre-training.

Index Terms— Articulation disorders, feature extraction,

convolutional neural networks, bottleneck feature, convolu-

tional restricted Boltzmann machine

1. INTRODUCTION

Recently, the importance of information technology in the

welfare-related fields has increased. For example, sign lan-

guage recognition using image recognition technology [1],

text reading systems from natural scene images [2], and the

design of wearable speech synthesizers for voice disorders [3]

have been studied. However, there has been very little re-

search on orally-challenged people, such as those with speech

impediments. It is hoped that speech recognition systems will

one day be able to recognize their voices.

One of the causes of speech impediments is cerebral palsy.

There are various types of cerebral palsy. In this paper, we fo-

cused on a person with an articulation disorder resulting from

the athetoid type as in [4]. Athetoid symptoms develop in

about 10-15% of cerebral palsy sufferers. In the case of a per-

son with this type of articulation disorder, the first movements

are sometimes more unstable than usual. That means, the case

of movements related to speaking, the first utterance is often

unstable or unclear due to the athetoid symptoms. Therefore,

we recorded speech data for a person with a speech impedi-

ment who uttered a given word several times, and we inves-

tigated the influence of the unstable speaking style caused by

the athetoid symptoms.

Fig. 1. Example of spectrograms for an utterance (/hyoujun/

in Japanese) spoken by a physically unimpaired person (top)

and a person with a dysarthric articulation disorder (bottom)

Fig. 1 shows spectrograms for an utterance (/hyoujun/ in

Japanese) spoken by a physically unimpaired person and a

person with a dysarthric articulation disorder. For dysarthric

speech, where the signal is not obviously more clear than the

signal uttered by a physically unimpaired person, the spectral

transition in the short term is considered to be an important

factor in capturing the local temporal-dimensional character-

istics. From this fact, it is clear that a speaker-independent

acoustic model for physically unimpaired persons is not ade-

quate. Therefore, we employ convolutional neural networks

(CNN), a [5]-based approach to extract disorder-dependent

features from a segment MFCC map. The CNN is regarded

as a successful tool and has been widely used in recent years

for various tasks, such as image analysis [6], a spoken lan-
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guage [7], and music recognition [8]. A CNN consists of a

pipeline of convolution and pooling operations followed by a

multi-layer perceptron. Thanks to the convolution and pool-

ing operations, we can train the CNN robustly to deal with

the small local fluctuations associated with articulation disor-

ders. Furthermore, we expect that the CNN extracts specific

features associated with the articulation disorder that we are

targeting when we train the networks using only the speech

data of the articulation disorder.

In this paper, we used convolutive bottleneck networks

(CBN [9]), which are an extension of CNNs, to extract

disorder-specific features. CBNs stack a bottleneck layer,

where the number of units is extremely small compared with

the adjacent layers, following the CNN layers. Due to the

bottleneck layer having a small number of units, it is ex-

pected that it can aggregate the propagated information and

extract fundamental features included in an input map [10].

However, the features extracted using CBNs are sometimes

inferior to conventional features, such as MFCC.

The amount of speech data obtained from a person with

an articulation disorder is limited because their burden is large

due to the strain placed on their speech muscles. Although the

degree of difficulty experienced by such people when they

speak varies depending on the person, uttering many words is

often difficult for most. Therefore, the amount of recordable

speech data is limited, and the trained CBNs tend to over-

fit. In this paper, we show the effectiveness of pre-training

using Convolutional restricted Boltzmann machines (CRBM

[11]) through our experiments. Recently, deep learning is re-

searched widely by developing a fast learning algorithm for

a deep belief network (DBN [12]). The DBN is a multilayer

generative model that is composed of a restricted Boltzmann

machine (RBM), and neural networks based on a DBN have

been improving in performance dramatically. We expect that

CNN can be trained efficiently using a CRBM based on a

RBM that deals with two-dimensional acoustic features.

2. CONVOLUTIONAL BOTTLENECK NETWORKS

2.1. Convolutional neural networks

2.1.1. Convolutional layer

Assuming that we have a two-dimensional input feature map

x ∈ R
Nx

n
×Nx

m and a convolutive filter wk ∈ R
Nw

n
×Nw

m , the

output of a convolutive operation h = x ∗ w also becomes

a two-dimensional feature with the size of Nh
n × Nh

m(Nh
n ≡

Nx
n −Nw

n +1 and vice versa). CNN generally have a number

of such filters {w1, · · · ,wL} in a convolutive layer, and feeds

an input x using each filter to create the corresponding outputs

{h1, · · · ,hL} , which is referred to as a feature map.

Given all of the feature maps in the (k − 1)th layer

{hk−1
1 , · · · ,hk−1

i , · · · ,hk−1
I }, the jth feature map h

k
j ∈

R
Nh

k

n
×Nh

k

m in the kth (convolution) layer can be calculated

as

h
k
j = sigm

(

I
∑

i

w
k
j,i ∗ h

k−1
i + bkjE

)

, (1)

where wk
j,i and bkj indicate a predictable filter from the ith fea-

ture map in the (k− 1)th layer to the jth map in the kth layer

and a bias map of the jth map in the kth layer, respectively. E

denotes a matrix whose elements are 1. In this paper, we used

an element-wise sigmoid sunction for the activation function

as follows:

sigm(x) =
1

1 + e−x

, (2)

where the fraction bar indicates element-wise division.

Each unit in a convolution layer is connected to the units

in the corresponding local area of size Nw
n × Nw

m in the pre-

vious layer (local receptive field). In other words, the con-

volution layer in CNN capture local patterns in an input map

using various filters.

2.1.2. Pooling layer

Followed by the convolution layer, a pooling procedure is

generally used in CNN, creating what is called a pooling

layer. Each unit in the pooling layer aggregates responses in

the local subregion B(M × M) in the previous convolution

layer. As a result, a feature map in the pooling layer has the

size of Nh
n/M × Nh

m/M . We use average-pooling in this

paper.

This pooling process enables the network to ignore small

position shifts of a key point in the input feature map since it

aggregates information in the local area.

2.2. Architecture of CBN

Convolutional bottleneck networks (CBN) consist of an in-

put layer, convolution layer and pooling layer pairs, fully-

connected MLPs (multi-layer perceptrons) with a bottleneck

structure, and an output layer in the order shown in Fig. 2. In

our approach, the CBN receives a mel map (two-dimensional

acoustic features in time-melfrequency) and outputs 54 phone

labels. We give 15 feature maps with the 7×11 kernel to con-

volution layer. In the pooling layer, previous feature map is

contracted one third. The MLP shown in Fig. 2 stacks three

layers (m1, m2 , m3), where we give 108 units, 30 bottleneck

units, and 108 units in each layer, each respectively. Since

the bottleneck layer has reduced the number of units for the

adjacent layers, we can expect that each unit in the bottleneck

layer aggregates information and behaves as a compact fea-

ture descriptor that represents an input with a small number

of bases.
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Convolution                           Pooling                                 Fully connected MLP

Bottleneck layer

C1 S1 m1 m2 m3 OUTPUT

Fig. 2. Convolutive Bottleneck Networks (CBN)

2.3. Bottleneck feature extraction

First, we prepare the input features for training CBN from a

speech signal. After calculating short-term mel spectra from

the signal, we obtain mel maps by dividing the mel spectra

into segments with several frames (13 frames in our experi-

ments) allowing overlaps. For the output units of the CBN, we

use phone binary labels that correspond to the input mel-map.

The parameters of the CBN are trained by back-propagation

with stochastic gradient descent, starting from random values.

The bottleneck (BN) features in the trained CBN are then used

in the training of a GMM-HMM for speech recognition.

In the test stage, we extract features using the CBN, which

feed the mel maps obtained from test data and tries to produce

the appropriate phone labels in the output layer. Again, we

use the BN features in the middle layer, where it is considered

that information in the input data is aggregated. Finally, the

system recognizes dysarthric speech by feeding the extracted

BN features into HMMs.

3. PRE-TRAINING OF CBN

3.1. RBM

A restricted Boltzmann machine (RBM) is an undirected

graphical model that defines the distribution of visible unit

with binary hidden units, the probabilistic semantics and the

energy function as follows:

P (v,h) =
1

Z
exp

(

− E(v,h)
)

, (3)

ERBM(v,h) = −
∑

i,j

viWijhj −
∑

j

cjhj −
∑

i

bivi, (4)

where Z is a normalization constant, v ∈ R
I×1 denotes

binary visible states, and h ∈ R
J×1 denotes binary hid-

den states. i and j are the index of the number of visible

units and hidden units, respectively. bi and cj are biases

of visible and hidden units, respectively. An RBM was

originally introduced as a method of representing binary

valued data (Bernoulli-Bernoulli RBM; BB-RBM), and it

later came to be used to deal with real-valued data known

as a Gaussian-Bernoulli RBM (GB-RBM). The GB-RBM

is further developed to Improved Gaussian-Bernoulli RBM

(IGB-RBM [13]). The conditional probability of a BB-RBM

can be written as follows:

P (hj = 1|v) = sigm
(

∑

i

Wijvi + cj

)

, (5)

P (vi = 1|h) = sigm
(

∑

j

Wijhj + bi

)

. (6)

3.2. CRBM

A Convolutional restricted Boltzmann machine (CRBM) is a

probabilistic energy based model that has two layers. The

difference between the standard RBM and the CRBM is that

the input data of the former is a 2-D feature map against the

form of vector of the latter. When the visible units are real-

valued and the hidden feature map consists of binary units, the

model is called a Gaussian-Bernoulli CRBM. Furthermore,

when considering the variance of visible units, we call the

model Improved Gaussian-Bernoulli CRBM (IGB-CRBM).

The energy function of an IGB-CRBM is defined as follows:

ECRBM(v,h) =
1

2σ2

∑

i,j

(vi,j − b)2

−
K
∑

k=1

∑

i,j

hk
i,j

(

1

σ2
(W̃k ∗ v)i,j + ck

)

, (7)

where v ∈ R
Nv

n
×Nv

m denotes the visible nodes, and h ∈
R

Nh

n
×Nh

m
×K denotes the hidden nodes of K groups. b and

ck are biases of visible and k-th hidden units, and σ is the

standard deviation associated with a Gaussian visible unit v.

The visible nodes and hidden nodes are related by the weight

matrix W
k ∈ R

Nw

n
×Nw

m that represents the connection be-

tween the visible units and the hidden units in the k-th group.

(Nv
n , N

v
m), (Nh

n , N
h
m) and (Nw

n , Nw
m) refer to the size of vis-

ible layer, hidden layer and weight matrix, respectively. We
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define W̃ k as the filter matrix W
k flipped horizontally and

vertically.

The conditional probabilities of an IGB-CRBM can be

written as follows:

P (v|h) = N
(

v;
∑

k

W
k ∗ hk + bE, σ2

E

)

, (8)

P (hk
i,j = 1|v) = sigm

(

(W̃k ∗ v)i,j + ck

)

, (9)

where N(·|µ, σ2) denotes the Gaussian probability density

function with mean µ and variance σ2. In the rest of paper,

we call the IGB-CRBM the CRBM simply.

Given a training data set {v(n)}Nn=1, the CRBM parame-

ter is estimated to maximize the log-likelihood of the CRBM

L = log
∏

n P (v(n)). The gradient of this log-likelihood

with respective to θ is written as

∂ logP (v(n))

∂θ
=

〈
∂ECRBM(v(n),h)

∂θ
〉data + 〈

∂ECRBM(v,h)

∂θ
〉model, (10)

where 〈·〉data and 〈·〉model indicate expectations of input data

and the inner model, respectively. However, it is usually dif-

ficult to compute the second term in Eq. (10), we use Con-

trastive Divergence [12]. Each parameter is updated using

stochastic gradient descent (SGD) from Eq. (10).

3.3. Pre-training

In a deep network, error signals become weaker as they are

backpropagated, especially for the first layer’s units. In a

CBN, that corresponds to a convolution layer and the convo-

lutional kernel is affected considerably by the initial values.

Therefore, the recognition accuracy also depends on the ini-

tial values of the convolution kernels. In order to avoid this

problem, we propose pre-training using a CRBM. First, we

train the CRBM parameters. Then, we copy these weights

W
k as the initial values of convolution weights w

l
k,input in

the lth layer, where input is an input feature. Finally, we

fine-tune CBN using backpropagation. We expect that this

approach will result in efficient learning.

4. EXPERIMENTAL EVALUATION

4.1. Experimental conditions

Our feature extraction method was evaluated on a word-

recognition task for one male with an articulation disorder.

We recorded 216 words included in the ATR Japanese speech

database [14], repeating each word three times. The utterance

signal was sampled at 16 kHz and windowed with a 25-msec

Hamming window every 10 msec. Then we clipped each

utterance manually. In our experiments, the first utterances of

each word were used for evaluation, and the other utterances

(the 2nd through 5th utterances) were used for the training of

both the CBN and acoustic models. We prepare a mel map

by merging mel spectra into a 2D feature with 13 frames.

We used the HMMs (54 context-independent phones) with

5 states and 8 Gaussian mixtures for the acoustic model.

We trained and evaluated a CBN that has 30 units in the

bottleneck (BN) layer.

In the pre-training, the number of feature maps and the

kernel size of the CRBM were set to 15 and 7×11, respec-

tively (the same as the CBN parameters). We used the same

dataset described above for the training of the CRBM. A fea-

ture map consisted of 28 frames. We iterated batch-based

training with 50 feature maps in a mini-batch. The learn-

ing rate was set to 0.001 for the first few epochs, and then

changed to 0.0001. Furthermore, the variance of visible units

σ2 was set to the average of the variance calculated from the

input maps, and the hidden feature map’s bias was fixed at -4

at first [15], and few epochs later, learned.

4.2. Recognition results using speaker-independent HMMs

for physically unimpaired persons

At the beginning, we evaluated the recognition experiment

using a speaker-independent acoustic model for physically

unimpaired persons included in Julius [16]. The test dataset

was the same as that mentioned in 4.1. The acoustic model

consisted of a triphone HMM set with 25 dimensional MFCC

features (12-order MFCCs, their delta, and energy) and 16

mixture components for each state. Each HMM had three

states and three self-loops.

The obtained recognition accuracy was only 24.07%.

Based on these results, it is clear that a speaker-dependent

model and a robust feature are necessary for speech recogni-

tion of a person with an articulation disorder.

4.3. Results and discussion

First, we investigated the influence of randomness, where the

convolution kernel is randomly initialized each time. Fig. 3

shows the average accuracy for five different initializations.

The maximum recognition accuracy with the random initial

kernel was 84.26% and the variance of accuracy was 5.37.

Next, we showed the effectiveness of pre-training. We ob-

tained the parameters of the CRBM from training data. Next,

these kernels were used as the initial value of the convolu-

tion layer for the CBN and we then trained the CBN with

backpropagation. The maximum recognition accuracy using

pre-training was 86.11% and the variance of accuracy for 5

trials was 0.83.

Fig. 3 also shows the average accuracies of word recog-

nition experiments comparing two CBNs with the conven-

tional MFCC feature. An average accuracy with pre-training

is 3.58% and 2.84% higher than those without pre-training

and the conventional MFCC feature, respectively. This result
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shows that the learned kernel using a CRBM is more effec-

tive than the random value kernel as the initial value for CBN

training.

Fig. 3. Word recognition accuracy using MFCC+∆+∆∆ and

CBN

It is thought that the reason why the recognition accuracy

improved is that the network was trained adequately by pre-

training using a CRBM. The backpropagation algorithm has

the problem in which the error signals become weaker and

weaker as they are propagated in the lower layers. Initializing

the convolution kernel using a CRBM compensates for this

problem. Because a CRBM is a generative model, a CRBM

is learned to capture the authentic distribution of observed

data. With the CBN, the convolutional kernel pre-trained by

a CRBM extracts the essential information and it can propa-

gate them to the next layer. Therefore, the network is trained

efficiently compared to the case where a randomly initialized

kernel is used.

5. CONCLUSION

In this paper, we presented a pre-training method for a

CBN using a CRBM. Through experiments, we showed

improvements in speech recognition accuracy compared with

a randomly initialized convolution kernel, and the RBM pre-

training helps to train networks when data are limited. In

future work, we will apply pre-training to other speakers with

articulation disorders and adapt a better pre-training method.
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