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ABSTRACT

We present in this paper an exemplar-based voice conversion
(VC) method using a phoneme-categorized dictionary. Sparse
representation-based VC using Non-negative matrix factorization
(NMF) is employed for spectral conversion between different speak-
ers. In our previous NMF-based VC method, source exemplars and
target exemplars are extracted from parallel training data, having
the same texts uttered by the source and target speakers. The input
source signal is represented using the source exemplars and their
weights. Then, the converted speech is constructed from the target
exemplars and the weights related to the source exemplars. How-
ever, this exemplar-based approach needs to hold all the training
exemplars (frames), and it may cause mismatching of phonemes
between input signals and selected exemplars. In this paper, in or-
der to reduce the mismatching of phoneme alignment, we propose
a phoneme-categorized sub-dictionary and a dictionary selection
method using NMF. By using the sub-dictionary, the performance
of VC is improved compared to a conventional NMF-based VC.
The effectiveness of this method was confirmed by comparing its
effectiveness with that of a conventional Gaussian Mixture Model
(GMM)-based method and a conventional NMF-based method.

Index Terms— voice conversion, sparse representation, non-
negative matrix factorization, sub-dictionary

1. INTRODUCTION

The human voice is rich in information. A listener perceives not only
linguistic information from a speaker’s voice but also speaker iden-
tity, emotional information, etc. Voice conversion (VC) is a tech-
nique for converting specific information in speech while maintain-
ing the other information in the utterance. One of the most popular
VC applications is speaker conversion [1]. In speaker conversion,
a source speaker’s voice individuality is changed to a specified tar-
get speaker’s so that the input utterance sounds as though a specified
target speaker had spoken it.

There have also been studies on several tasks that make use of
VC. Emotion conversion is a technique for changing emotional in-
formation in input speech while maintaining linguistic information
and speaker individuality [2, 3]. VC is also being adopted as as-
sistive technology that reconstructs a speaker’s individuality in elec-
trolaryngeal speech [4], disordered speech [5] or speech recorded
by NAM microphones [6]. In recent years, VC has been used for
automatic speech recognition (ASR) or speaker adaptation in text-
to-speech (TTS) systems [7]. These studies show the varied uses of
VC.

Many statistical approaches to VC have been studied [1, 8, 9].
Among these approaches, the Gaussian mixture model (GMM)-
based mapping approach [1] is widely used. In this approach, the

conversion function is interpreted as the expectation value of the
target spectral envelope. The conversion parameters are evaluated
using Minimum Mean-Square Error (MMSE) on a parallel training
set. A number of improvements in this approach have been pro-
posed. Toda et al. [10] introduced dynamic features and the global
variance (GV) of the converted spectra over a time sequence. He-
lander et al. [11] proposed transforms based on partial least squares
(PLS) in order to prevent the over-fitting problem associated with
standard multivariate regression. There have also been approaches
that do not require parallel data that make use of GMM adaptation
techniques [12] or eigen-voice GMM (EV-GMM) [13, 14].

In recent years, approaches based on sparse representations have
gained interest in a broad range of signal processing. In [15], we
proposed exemplar-based VC, which is based on the idea of sparse
representation. In approaches based on sparse representations, the
observed signal is represented by a linear combination of a small
number of atoms. In some approaches for source separation, the
atoms are grouped for each source, and the mixed signals are ex-
pressed with a sparse representation of these atoms. By using only
the weights of the atoms related to the target signal, the target signal
can be reconstructed. Gemmeke et al. [16] also propose an exemplar-
based method for noise-robust speech recognition. In that method,
the observed speech is decomposed into speech atoms, noise atoms,
and their weights. Then the weights of the speech atoms are used as
phonetic scores (instead of the likelihoods of hidden Markov mod-
els) for speech recognition.

In our exemplar-based VC [15], we use Non-negative Matrix
Factorization (NMF) [17], which is a well-known approach for
source separation and speech enhancement [18, 19]. In our VC,
source exemplars and target exemplars are extracted from the par-
allel training data, having the same texts uttered by the source and
target speakers. The input source signal is expressed with a sparse
representation of the source exemplars using NMF. By replacing
a source speaker’s exemplar with a target speaker’s exemplar, the
original speech spectrum is replaced with the target speaker’s spec-
trum. Because our approach is not a statistical one, we assume that
our approach can avoid the over-fitting problem and create a natural
voice.

Moreover, our exemplar-based VC has noise robustness [15].
The noise exemplars which are extracted from the before- and after-
utterance sections in an observed signal are used as the noise dictio-
nary, and the VC process is combined with an NMF-based noise
reduction method. On the other hand, NMF is one of the clus-
tering methods. In our exemplar-based VC, if the phoneme label
of a source exemplar is given, we can discriminate the phoneme
of the input signal by using NMF. In [5], we proposed assistive
technology for articulation disorders by using this function of our
exemplar-based VC. From these two applications, we assume that
our exemplar-based VC using NMF is a flexible method that can be
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applied to many important tasks.
In this paper, we propose advanced exemplar-based VC using

NMF. In order to improve the performance of speaker conversion
of exemplar-based VC, we applied a phoneme-categorized dictio-
nary and a dictionary selection method to our VC using NMF. In
conventional NMF-based VC, the number of dictionary frames be-
comes large because the dictionary holds all the training exemplar
frames. Therefore, it may cause a phoneme mismatching between
input signals and selected exemplars. In this paper, a training ex-
emplar is divided into a phoneme-categorized sub-dictionary, and an
input signal is converted by using the selected sub-dictionary. The
effectiveness of this method was confirmed by comparing it with the
conventional NMF-based method and the conventional GMM-based
method.

The rest of this paper is organized as follows: In Section 2, the
basic idea of NMF-based VC is described. In Section 3, our pro-
posed method is described. In Section 4, the experimental data are
evaluated, and the final section is devoted to our conclusions.

2. VOICE CONVERSION USING NON-NEGATIVE
MATRIX FACTORIZATION

2.1. Basic Approach

In the exemplar-based approach, the observed signal is represented
by a linear combination of a small number of bases.

xl ≈
∑J

j=1 ajhj,l = Ahl (1)

xl represents the l-th frame of the observation. aj and hj,l represent
the j-th basis and the weight, respectively. A = [a1 . . .aJ ] and
hl = [h1,l . . . hJ,l]

T are the collection of the bases and the stack
of weights. In this paper, each basis denotes the exemplar of the
spectrum, and the collection of exemplar A and the weight vector
hl are called the ‘dictionary’ and ‘activity’, respectively. When the
weight vector hl is sparse, the observed signal can be represented by
a linear combination of a small number of bases that have non-zero
weights. Eq. (1) is expressed as the inner product of two matrices
using the collection of the frames or bases.

X ≈ AH (2)
X = [x1, . . . ,xL], H = [h1, . . . ,hL]. (3)

L represents the number of the frames.
Fig. 1 shows the basic approach of our exemplar-based VC,

where D,L, and J represent the numbers of dimensions, frames,
and bases, respectively. Our VC method needs two dictionaries that
are phonemically parallel. As represents a source dictionary that
consists of the source speaker’s exemplars and At represents a tar-
get dictionary that consists of the target speaker’s exemplars. These
two dictionaries consist of the same words and are aligned with dy-
namic time warping (DTW) just as conventional GMM-based VC is.
Hence, these dictionaries have the same number of bases.

This method assumes that when the source signal and the target
signal (which are the same words but spoken by different speakers)
are expressed with sparse representations of the source dictionary
and the target dictionary, respectively, the obtained activity matrices
are approximately equivalent. Fig. 2 shows an example of the ac-
tivity matrices estimated from a Japanese word “ikioi” (“vigor” in
English), where one is uttered by a male, the other is uttered by a
female, and each dictionary is structured from just one word “ikioi”
as the simple example.
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Fig. 2. Activity matrices for parallel utterances

As shown in Fig. 2, these activities have high energies at similar
elements. For this reason, we assume that when there are parallel
dictionaries, the activity of the source features estimated with the
source dictionary may be able to be substituted with that of the tar-
get features. Therefore, the target speech can be constructed using
the target dictionary and the activity of the source signal as shown
in Fig. 1. In this paper, we use Non-negative Matrix Factorization
(NMF), which is a sparse coding method in order to estimate the
activity matrix.

2.2. Estimation of Activity

The joint matrix Hs in Fig. 1 is estimated based on NMF with the
sparse constraint that minimizes the following cost function,

d(Xs,AsHs) + ||(λ11×L). ∗Hs||1 s.t. Hs ≥ 0 (4)

1 is an all-one matrix. The first term is the Kullback-Leibler (KL)
divergence between Xs and AsHs. The second term is the sparse
constraint with the L1-norm regularization term that causes Hs to
be sparse. The weights of the sparsity constraints can be defined
for each exemplar by defining λT = [λ1 . . . λJ ]. In this paper, all
elements in λ were set to 0.1. Hs minimizing Eq. (4) is estimated
iteratively applying the following update rule [17]:

Hs
n+1 = Hs

n. ∗ (AsT (Xs./(AsHs
n)))

./(AsT1D×L + λ11×L) (5)

with .∗ and ./ denoting element-wise multiplication and division,
respectively.

By using the activity and the target dictionary, the converted
spectral features are constructed, as follows:

X̂t = (AtHs) (6)
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3. NON-NEGATIVE MATRIX FACTORIZATION USING
PHONEME-CATEGORIZED DICTIONARY

In the NMF-based approach described in Sec. 2, the parallel dictio-
nary consists of the parallel training data themselves. Therefore, as
the number of the bases in the dictionary increases, the input sig-
nal becomes to be represented by a linear combination of a LARGE
number of bases rather than a SMALL number of bases. When the
number of bases that represent the input signal becomes large, the
assumption of similarity between source and target activities may be
weak due to the influence of the mismatch between the input signal
and the selected bases. We assume that this problem degrades the
performance of the exemplar-based VC. Hence, we use a phoneme-
categorized sub-dictionary in place of the large dictionary in order
to reduce the number of the bases that represent the input signal.

3.1. Phoneme-categorized Dictionary

Fig. 3 shows how to construct the sub-dictionary. As and At im-
ply the source and target dictionary which hold all the bases from
training data. These dictionaries are divided into K dictionaries. In
this paper, the dictionaries are divided into 10 categories according
to Japanese phoneme categories shown in Table 1.

In order to select the sub-dictionary, a “categorizing-dictionary”
which consists of the representative vector from each sub-dictionary
is constructed. The representative vectors for each phoneme cate-
gory consist of the mean vectors of the Gaussian Mixture Model
(GMM).

p(x(k)
n ) =

Mk∑
m=1

α(k)
m N(x(k)

n ,µ(k)
m ,Σ(k)

m ) (7)

Mk, α(k)
m , µ(k)

m and Σ
(k)
m represent the number of the Gaussian mix-

ture, the weights of mixture, mean and variance of the m-th mixture
of the Gaussian, in the k-th sub-dictionary, respectively. Each pa-
rameter is estimated by using an EM algorithm.

The basis of the categorizing-dictionary which corresponds to
the sub-dictionary is represented using the estimated phoneme GMM
as follows:

Φs
k = [x

(k)
1 , . . . ,x

(k)
Nk

] (8)

θk = [µ
(k)
1 , . . . ,µ

(k)
Mk

] (9)

Θ = [θ1, . . . ,θK ] (10)

Φs
k, Nk and Θ represent the k-th sub-dictionary, and the number

of frames of the k-th sub-dictionary, the categorizing dictionary, re-
spectively.

Table 1. Sub-dictionary categories
Category Phoneme
a a
e e
i i
o o
u u
plosives p, t, k, b, d, g, s
fricatives s, h, z
nasals m, n, N
semi-vowel j, w
liquid r

3.2. Dictionary Selection and Voice Conversion

Fig. 4 shows the flow of the dictionary selection and VC. The input
spectral features Xs are represented by a linear combination of bases
from the categorizing-dictionary Θ. The weights of the bases are
represented as activities Hs

Θ.

Xs ≈ ΘHs
Θ s.t. Hs

Θ ≥ 0 (11)
Xs = [xs

1, . . . ,x
s
L] (12)

Hs
Θ = [hs

Θ1, . . . ,h
s
ΘL] (13)

hs
Θl = [hs

θ1l, . . . ,h
s
θK l]

T (14)

hs
θkl = [hs

θ1l, . . . , h
s
θMkl]

T (15)

The activities Hs
Θ are estimated by Eq. (5)

Then, the l-th frame of input feature xs
l is represented by a linear

combination of bases from the source speaker sub-dictionary. The
sub-dictionary Φs

k̂
, which corresponds to xl, is selected as follows:

k̂ = arg max
k

11×Mkhs
θkl = arg max

k

Mk∑
m=1

hs
θml (16)

xl = Φs
k̂hk̂,l (17)

The activity hl,k̂ in Eq. (17) is estimated by Eq. (5) from the selected
source speaker sub-dictionary.

By using the activity and the sub-dictionary of the target speaker
Φt

k̂
, the l-th frame of the converted spectral feature ŷl is constructed

as follows:

ŷl = Φt
k̂hk̂,l (18)

4. EXPERIMENTAL RESULTS

4.1. Experimental Conditions

The proposed VC technique was evaluated by comparing it with
the conventional NMF-based method [15] (referred as the “sample-
based method” in this paper) and the conventional GMM-based
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ŷ

s

l1θ
h

s

l
K

θ
h

s

l
k

θ
h

Activity

t

K
Φ

s

K
Φ

t

k
Φ

s

k
Φ

s

l

M

k
k

kk
θ

h1
×

=
1

maxargˆ

…

…

…

…

l
x

…
…

Activity
lk ,ˆh

phoneme-categorized sub-dictionaries

Fig. 4. NMF-based VC using the categorized dictionary

method [1] in a speaker-conversion task using clean speech data.
The source speaker and target speaker were one male and one fe-
male speaker, whose speech is stored in the ATR Japanese speech
database [20], respectively. The sampling rate was 8 kHz. A total
of 216 words were used to construct parallel dictionaries in the
sample-based VC, proposed VC, and used to train the GMM in the
GMM-based method. The other 100 words were used for the test.

In the proposed and sample-based methods, the dimension num-
ber of the spectral feature is 2,565. It consists of a 513 dimen-
sional STRAIGHT spectrum [21] and its consecutive frames (the
2 frames coming before and the 2 frames coming after). The Gaus-
sian mixture, which is used to construct the categorizing-dictionary,
is 1/500 of the number of bases of each sub-dictionary. The number
of iterations for estimating the activity in the proposed and sample-
based methods was 300. In the conventional GMM-based method,
mfcc+∆mfcc+∆∆mfcc is used as a spectral feature. Its number of
dimensions is 64. The number of Gaussian mixture was set to 64,
which is experimentally selected.

In this paper, F0 information is converted using a conventional
linear regression based on the mean and standard deviation [10]. The
other information such as aperiodic components is synthesized with-
out any conversion.

In order to evaluate our proposed method, we conducted objec-
tive and subjective evaluations. NSD (Normalized Spectrum Distor-
tion) [22] represented as the following equation was used for objec-
tive evaluation.

NSD =

√
||SY − ŜX ||2
||SY − SX ||2 (19)

SX , SY and ŜX represent 513-dimensional STRAIGHT spectra of
source, target and converted utterance, respectively. The subjective
evaluation was conducted on “naturalness” and “similarity to the tar-
get speaker”. For the evaluation on naturalness, we performed a
Mean Opinion Score (MOS) test [23]. The opinion score was set
to a 5-point scale (5: excellent, 4: good, 3: fair, 2: poor, 1: bad).
On the “similarity” evaluation, the XAB test was carried out. In an
XAB test, each subject listened to the voice of the target speaker.
Then the subject listened to the voice converted by the two meth-
ods and selected which sample sounded most similar to the target
speaker’s voice. In these two subjective evaluations, a total of 10
Japanese speakers took part in the test using headphones.

4.2. Results and Discussion

The left side of Fig. 5 shows the NSD for each method. As shown
in the figure, the distribution of the sample-based method (NMF) is
higher than that of GMM-based method (GMM). However, our pro-
posed method obtained a lower distribution than the other two meth-
ods. This result shows the effectiveness of a phoneme-categorized
sub-dictionary in NMF-based VC.

The right side of Fig. 5 shows the MOS test on naturalness.
The error bars show 95% confidence intervals. There are no sig-
nificant differences between the sample-based method (NMF) and
the GMM-based method (GMM). However, our proposed method
obtained a significantly higher score than the other two methods.

Fig. 6 shows the result of the XAB test on similarity. Similar
to the right side of Fig. 5, there are no significant differences be-
tween the sample-based method (NMF) and the GMM-based method
(GMM). However, our proposed method obtained a higher score
than the sample-based method (NMF).
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5. CONCLUSIONS

We have proposed an advanced exemplar-based VC using NMF
that implements phoneme-categorized dictionary selection. In our
proposed method, the input spectral feature can be represented by
smaller numbers of exemplars, which are closer to the original
phonemes compared to conventional NMF-based VC. Objective
and subjective evaluations show the effectiveness of our method
compared to conventional NMF and GMM-based VC. Especially,
subjective evaluation shows that our proposed VC creates a natu-
ral voice compared to the other two VC methods. In future work,
we will apply our method to noisy environments and an assistive
technology for people with articulation disorders.
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