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Abstract
This paper presents a multimodal voice conversion (VC)
method for noisy environments. In our previous exemplar-
based VC method, source exemplars and target exemplars are
extracted from parallel training data, in which the same texts
are uttered by the source and target speakers. The input source
signal is then decomposed into source exemplars, noise exem-
plars obtained from the input signal, and their weights. Then,
the converted speech is constructed from the target exemplars
and the weights related to the source exemplars. In this paper,
we propose a multimodal VC method that improves the noise
robustness of our previous exemplar-based VC method. As vi-
sual features, we use not only conventional DCT but also the
features extracted from Active Appearance Model (AAM) ap-
plied to the lip area of a face image. Furthermore, we introduce
the combination weight between audio and visual features and
formulate a new cost function in order to estimate the audio-
visual exemplars. By using the joint audio-visual features as
source features, the VC performance is improved compared to
a previous audio-input exemplar-based VC method. The effec-
tiveness of this method was confirmed by comparing its effec-
tiveness with that of a conventional Gaussian Mixture Model
(GMM)-based method.
Index Terms: voice conversion, multimodal, image features,
non-negative matrix factorization, noise robustness

1. Introduction
Background noise is an unavoidable factor in speech process-
ing. In the task of automatic speech recognition (ASR), one
problem is that the recognition performance remarkably de-
creases under noisy environments, and it becomes a significant
problem seeking to develop a practical use of ASR. The same
problem occurs in voice conversion, which can modify nonlin-
guistic information, such as voice characteristics, while keeping
linguistic information unchanged. The noise in the input signal
is not only output with the converted signal, but may also de-
grade the conversion performance itself due to unexpected map-
ping of source features. To address the problem, in this paper,
we propose a noise-robust VC method that is based on sparse
representations.

Approaches based on sparse representations have gained
interest in a broad range of signal processing in recent years.
Non-negative matrix factorization (NMF) [1], which is based
on the idea of sparse representations is a well-known approach
for source separation and speech enhancement [2, 3]. In these
approaches, the observed signal is represented by a linear com-
bination of a small number of atoms, such as the exemplar and
basis of NMF. In some approaches for source separation, the

atoms are grouped for each source, and the mixed signals are
expressed with a sparse representation of these atoms. By us-
ing only the weights of the atoms related to the target signal, the
target signal can be reconstructed. Gemmeke et al. [4] proposed
an exemplar-based method for noise-robust speech recognition
using NMF. In that method, the observed speech is decomposed
into the speech atoms, noise atoms, and their weights. Then
the weights of the speech atoms are used as phonetic scores (in-
stead of the likelihoods of hidden Markov models) for speech
recognition.

In [5], we discussed a noise-robust voice conversion (VC)
technique using NMF. In that method, source exemplars and
target exemplars are extracted from the parallel training data, in
which the same texts are uttered by the source and target speak-
ers. Also, the noise exemplars are extracted from the before-
and after-utterance sections in an observed signal. For this rea-
son, no training processes related to noise signals are required.
The input source signal is expressed with a sparse representa-
tion of the source exemplars and noise exemplars. Only the
weights related to the source exemplars are picked up, and the
target signal is constructed from the target exemplars and the
picked-up weights. This method showed better performances
than the conventional Gaussian Mixture Model (GMM)-based
method [6] in VC experiments using noise-added speech data.
However, the performance of our method was not good enough
for practical use.

As one of the techniques used for robust speech recogni-
tion under noisy environments, audio-visual speech recogni-
tion, which uses lip dynamic visual information and audio in-
formation has been studied. In audio-visual speech recogni-
tion, there are mainly three integration methods: early integra-
tion [7], which connects the audio feature vector with the visual
feature vector; late integration [8], which weights the likelihood
of the result obtained by a separate process for audio and visual
signals, and synthetic integration [9], which calculates the prod-
uct of output probability in each state and so on. DCT is widely
used as a visual feature in audio-speech recognition. In [10], we
proposed audio-visual speech recognition using a visual feature
extracted from AAM [11]. The feature contains shape informa-
tion, which expresses the lip movement and texture information
which express intensity changes such as teeth.

In this paper, we propose a multimodal VC technique using
NMF with a combination weight between audio and visual fea-
tures. The visual information is extracted from videos, which
captured the lip movement of the utterances. As visual features,
we use not only DCT but also a visual feature extracted from
AAM. The extracted visual features are connected with the au-
dio features and used as source exemplars. The input noisy
audio-visual feature is represented by a linear combination of
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source exemplars and noise exemplars. Then, the source exem-
plars are replaced with related parallel target exemplars, which
are extracted from clean audio features. The effectiveness of
this method was confirmed by comparing it with that of the con-
ventional audio input NMF-based method and the conventional
GMM-based method.

The rest of this paper is organized as follows: In Section
2, related works are introduced. In Section 3, our proposed
method is described. In Section 4, the experimental data are
evaluated, and the final section is devoted to our conclusions.

2. Related works
VC is a technique for converting specific information in speech
while maintaining the other information in the utterance. One
of the most popular VC applications is speaker conversion [6].
In speaker conversion, a source speaker’s voice individuality is
changed to a specified target speaker’s so that the input utter-
ance sounds as though a specified target speaker had spoken it.

There have also been studies on several tasks that make
use of VC. Emotion conversion is a technique for chang-
ing emotional information in input speech while maintain-
ing linguistic information and speaker individuality [12, 13].
VC is also being adopted as assistive technology that recon-
structs a speaker’s individuality in electrolaryngeal speech [14],
disordered speech [15] or speech recorded by NAM micro-
phones [16]. In recent years, VC has been used for auto-
matic speech recognition (ASR) or speaker adaptation in text-
to-speech (TTS) systems [17].

The statistical approaches to VC are most widely stud-
ied [6, 18, 19]. Among these approaches, the Gaussian mixture
model (GMM)-based mapping approach [6] is widely used. In
this approach, the conversion function is interpreted as the ex-
pectation value of the target spectral envelope. The conversion
parameters are evaluated using Minimum Mean-Square Error
(MMSE) on a parallel training set. A number of improvements
in this approach have been proposed. Toda et al. [20] intro-
duced dynamic features and the global variance (GV) of the
converted spectra over a time sequence. Helander et al. [21]
proposed transforms based on partial least squares (PLS) in or-
der to prevent the over-fitting problem associated with standard
multivariate regression. There have also been approaches that
do not require parallel data that make use of GMM adaptation
techniques [22] or eigen-voice GMM (EV-GMM) [23, 24].

However, the effectiveness of these approaches was con-
firmed with clean speech data, and their utilization in noisy
environments was not considered. The noise in the input sig-
nal may degrade the conversion performance itself due to un-
expected mapping of source features. To address the problem,
in this paper, we propose exemplar-based multimodal VC. Joint
audio-visual features are used as the source feature of NMF-
based VC [5]. Because the audio features are not affected by
background noise, our method improved the noise robustness
of NMF-based VC.

3. Multimodal Voice Conversion
3.1. Basic Approach

In the approaches based on sparse representations, the observed
signal is represented by a linear combination of a small number
of bases.

xl ≈
J∑

j=1

wjhj,l = Whl (1)

xl represents the l-th frame of the observation. wj and hj,l

represent the j-th basis and the weight, respectively. W =
[w1 . . .wJ ] and hl = [h1,l . . . hJ,l]

T represent the collection
of the bases and the stack of weights. When the weight vector
hl is sparse, the observed signal can be represented by a lin-
ear combination of a small number of bases that have non-zero
weights. In this paper, each basis denotes the exemplar of the
speech or noise signal, and the collection of exemplar W and
the weight vector hl are called the ‘dictionary’ and ‘activity’,
respectively.

Figure 1 shows the basic approach of our exemplar-based
VC using NMF. D, d, L, and J represent the number of dimen-
sions of source features, dimensions of target features, frames
of the dictionary, and basis of the dictionary, respectively.

Our VC method needs two dictionaries that are phonemi-
cally parallel, where one dictionary (source dictionary) is con-
structed from source features and the other dictionary (target
dictionary) is constructed from target features. These two dic-
tionaries consist of the same words and are aligned with dy-
namic time warping (DTW). Hence, these dictionaries have the
same number of bases.

An input source feature matrix Xs is decomposed into a
linear combination of bases from the source dictionary Ws us-
ing NMF. The weights of the bases are estimated as an activity
Hs. Therefore, the activity includes the weight information of
input features for each basis. Then, the activity is multiplied
by a target dictionary in order to obtain the converted spectral
feature matrix X̂t, which is represented by a linear combina-
tion of bases from the target dictionary. Because the source and
target dictionaries are parallel phonemically, the bases used in
the converted features are phonemically the same as those of the
source features.
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Figure 1: Basic approach of NMF-based voice conversion

3.2. Multimodal Dictionary Construction

Figure 2 shows the process for constructing a parallel dictio-
nary. In order to construct a parallel dictionary, some pairs of
parallel utterances are needed, where each pair consists of the
same text. The source dictionary W s consists of jointed audio-
visual features, while the target dictionary W t consists of audio
features only.

For the audio features, a simple magnitude spectrum calcu-
lated by short-time Fourier transform (STFT) is extracted from
clean parallel utterances. Mel-cepstral coefficients are calcu-
lated from the STRAIGHT spectrum in order to obtain align-
ment information in DTW.

For visual features, we use DCT and the feature extracted
from AAM [10] of lip motion images of the source speaker’s ut-
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terance is used. AAM is a technique to express the face model
by the low-dimensional parameter. The subspace is constructed
by applying PCA to shape and texture of face feature points,
where s and g which represent the shape vector and the texture
vector are expressed by each mean vector s̄ and ḡ and eigenvec-
tor matrices Ps and Pg.

s = s̄ + Psbs (2)
g = ḡ + Pgbg (3)

bs and bg represent the shape parameter and the texture param-
eter, respectively. They are combined and reduced as shown in
Eq. (4) by applying PCA because there is a correlation in shape
and texture.

b =

(
Rsbs

bg

)
=

(
RsP

T
s (s− s̄)

PT
g (g − ḡ)

)
= Qc (4)

Rs is the matrix that normalizes the difference in the unit of
the shape vector and the texture vector. Q is an eigenvector
matrix. c is a vector of combined shape and texture parameters.
By controlling parameter c it becomes possible to operate shape
and texture together.

Then they are adjusted to satisfy the non-negativity con-
straint of NMF. The visual features are interpolated by spline
interpolation in order to fill the sampling rate gap between au-
dio features. Aligned audio and visual features of the source
speaker are joined and used as a source feature. Source and tar-
get dictionaries are constructed by lining up each of the features
extracted from parallel utterances.

The audio feature of the noise dictionary is extracted from
the before- and after-utterance sections in the input noisy audio
signal. The visual feature of the noise dictionary is extracted in
the same way of audio feature.
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Figure 2: Multimodal dictionary construction

3.3. Estimation of Activity from Noisy Source Signals using
NMF with a Combination Weight

In the exemplar-based approach, the spectrum of the noisy
source signal at a frame is approximately expressed by a non-
negative linear combination of the source dictionary, noise dic-

tionary, and their activities.

x = xs + xn

≈
J∑

j=1

ws
jh

av
j +

K∑
k=1

wn
kh

n
k

= [Ws N]

[
hav

hn

]
s.t. hav,hn ≥ 0

= Wh s.t. h ≥ 0 (5)

xs and xn represent the spectrum of the source signal and the
noise, respectively. Ws, N, hav , hn represent the source dic-
tionary, noise dictionary, and their activities at a frame, respec-
tively. All spectra are normalized for each frame.

The joint matrix h is estimated based on NMF with the
sparse constraint that minimizes a cost function [4]. In [25], we
used a simple NMF without considering the weights of the au-
dio and visual parameters when estimating the activity. In this
paper, we introduce audio-visual weight α and β because we
have to adjust the weight depending on SNR, and we propose a
new cost function as follows:

αd(xs,aud, [Ws,aud Naud]h) + βd(xs,vis, [Ws,vis Nvis]h)

+||λ. ∗ h||1 s.t. h ≥ 0 (6)

The first and second terms are the Kullback-Leibler (KL) di-
vergence between xs,aud and [Ws,aud Naud]h, xs,vis and
[Ws,vis Nvis]h, respectively. The third term is the sparse con-
straint with the L1-norm regularization term that causes h to
be sparse. The symbol of .∗ denotes element-wise multiplica-
tion. The weights of the sparsity constraints can be defined for
each exemplar by defining λT = [λ1 . . . λJ . . . λJ+K ]. In this
paper, the weights for source exemplars [λ1 . . . λJ ] were set to
0.1, and those for noise exemplars [λJ+1 . . . λJ+K ] were set to
0. h minimizing (6) is estimated iteratively applying the fol-
lowing update rule:

hj ← hj

D∑
d

fd +

E∑
e

ge

α+ β + λj
(7)

fd = αW s,aud
d,j αxa

d/(αW
s,audhav)d (8)

ge = βW s,vis
e,j βxv

e/(βW
s,vishav)e (9)

D and E represent the dimension of the audio and visual dic-
tionaries, respectively.

3.4. Target Speech Construction

From the estimated joint matrix h, the activity of the source
signal hav is extracted, and by using the activity and the target
dictionary, the converted spectral features are constructed.

x̂t = Wt,audhav (10)

The input source and converted spectral features are expressed
as a STRAIGHT spectrum. Hence, the target speech is syn-
thesized using a STRAIGHT synthesizer. The other features
extracted by STRAIGHT analysis, such as F0 and the aperiodic
components, are used to synthesize the converted signal without
any conversion.
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Table 1: SDIR calculated from converted speech using each image feature and weight

0 dB GMM
(audio NMF)

β = 0 β = 0.1 β = 1 β = 10 β = 20 β = 30
DCT 2.5031 2.631 2.7847 2.6809 2.5932
AAM 1.3521 2.4857 2.511 2.6719 2.7259 2.7313 2.7169

DCT+AAM 2.7672 2.7673 2.705 2.6185 2.5427

10 dB GMM
(audio NMF)

β = 0 β = 0.1 β = 1 β = 10 β = 20 β = 30
DCT 2.9128 2.9713 3.0777 2.9871 2.8829
AAM 1.4197 2.9052 2.9203 3.0243 3.0603 3.0363 2.9853

DCT+AAM 2.9302 3.0783 3.0218 2.8735 2.7397

20 dB GMM
(audio NMF)

β = 0 β = 0.1 β = 1 β = 10 β = 20 β = 30
DCT 3.2605 3.3118 3.3955 3.3303 3.2325
AAM 1.5251 3.2565 3.2641 3.3562 3.4501 3.417 3.3511

DCT+AAM 3.2712 3.3867 3.3947 3.2323 3.0742
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Figure 3: Flow chart of multimodal conversion

4. Experimental Results
4.1. Experimental Conditions

The proposed multimodal VC technique was evaluated by com-
paring it with an exemplar-based audio-input method [5] and a
conventional GMM-based method [6] in a speaker-conversion
task using clean speech data and noise-added speech data. The
source speaker and target speaker were one male and one fe-
male speaker, respectively, whose speech is stored in the ATR
Japanese speech database [26]. Source speaker speech and vi-
sual data are taken from the M2TINIT database [27]. The sam-
pling rate of the audio data was 16 kHz. The frame rate of the
visual data was 1/29.97 sec and the image size is 720 x 840.

A total of 50 sentences of clean speech were used to con-
struct the parallel dictionary for each method based on sparse
representation and used to train the GMM in the GMM-based
method. In the exemplar-based method, the number of exem-
plars of the source and target dictionaries was 80,868. Ten
sentences of clean speech or noisy speech were used in the
evaluation. The noisy speech was created by adding a noise
signal recorded in a restaurant (taken from the CENSREC-1-C
database [28]) to the clean speech sentences. The SNR was 0
dB, 10 dB and 20 dB. The noise dictionary is extracted from the
before- and after-utterance sections in the evaluation sentence.
For the visual dictionary, we used a 40-dimension DCT feature
and a 23-dimension c parameter extracted from AAM and its
segment feature, which is constructed by concatenating spectra
at each current frame± three frames. For the weights, α is 1, β

is changed 0.1, 1, 10, 20, 30.
In the methods based on sparse representation, a 513-

dimensional magnitude spectrum was used for the source and
noise dictionaries and a 1025-dimensional STRAIGHT spec-
trum was used for the target dictionary.

The number of iterations used to estimate the activity was
300. In the GMM-based method, the 1st through 24th linear-
cepstral coefficients obtained from the STRAIGHT spectrum
were used as the feature vectors. The number of mixtures was
64.

4.2. Results and Discussion

Table 1 shows the spectral distortion improvement ratio (SDIR)
[dB] for the noisy input source signal. The SDIR is defined as
follows:

SDIR[dB] = 10 log10

∑
d |X

t(d)−Xs(d)|2∑
d |Xt(d)− X̂t(d)|2

(11)

Here, Xs, Xt and X̂t are normalized so that the sum of the
magnitudes over frequency bins equals unity.

As shown in Table 1, the distortion improvements of
the proposed method were higher than conventional NMF
and GMM-based method, where the performance of AAM is
slightly better than that of DCT. Also, as the SNR decreases, an
optimum β may tend to be large. By changing the weight, we
can obtain the best SDIR value in various SNR environments.

5. Conclusions
We proposed multimodal VC using NMF based on the idea
of sparse representation. In our proposed method, the joint
audio-visual feature is used as the source feature. Input noisy
audio-visual features are decomposed into a linear combina-
tion of the clean audio-visual feature and the noise feature.
By replacing the source speaker’s audio-visual feature with the
target speaker’s audio feature, the voice individuality of the
source speaker is converted to the target speaker. Furthermore
we introduced audio-visual weight and formulate a new cost
function. By selecting optimal weight and image features, we
achieve the best performance of transformation accuracy. Eval-
uations show the greater effectiveness of our VC technique
compared to conventional audio-input NMF and GMM-based
VC.
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