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Abstract

This paper presents a voice conversion (VC) method that uti-
lizes recently proposed recurrent temporal restricted Boltzmann
machines (RTRBMs) for each speaker, with the goal of captur-
ing high-order temporal dependencies in an acoustic sequence.
Our algorithm starts from the separate training of two RTRBMs
for a source and target speaker using speaker-dependent train-
ing data. Since each RTRBM attempts to discover abstrac-
tions at each time step, as well as the temporal dependencies
in the training data, we expect that the models represent the
speaker-specific latent features in the high-order spaces. In
our approach, we run conversion from such speaker-specific-
emphasized features of the source speaker to those of the target
speaker using a neural network (NN), so that the entire network
(the two RTRBMs ant the NN) forms a deep recurrent neural
network and can be fine-tuned. Through VC experiments, we
confirmed the high performance of our method especially in
terms of objective criteria in comparison to conventional VC
methods such as Gaussian mixture model (GMM)-based ap-
proaches.

Index Terms: voice conversion, recurrent temporal restricted
Boltzmann machine, deep learning, recurrent neural network,
speaker specific features

1. Introduction

In recent years, voice conversion (VC), a technique used to
change specific information in the speech of a source speaker
into that of a target speaker while retaining linguistic informa-
tion, has been garnering much attention in speech signal pro-
cessing. VC techniques have been applied to various tasks, such
as speech enhancement [1], emotion conversion [2], speaking
assistance [3], and other applications [4, 5]. Most of the related
work in VC focuses not on f0 conversion but on the conversion
of spectrum features, and we conform to that in this report as
well.

Various statistical approaches to VC have been studied so
far, for example those discussed in [6, 7]. Among these ap-
proaches, the Gaussian mixture model (GMM)-based mapping
method [8] is widely used, and a number of improvements have
been proposed. Toda et al. [9] introduced dynamic features and
the global variance (GV) of the converted spectra over a time
sequence. Helander er al. [10] proposed transforms based on
Partial Least Squares (PLS) to prevent the over-fitting problem
encountered in standard multivariate regression.

However, the GMM-based approaches rely on “shallow”
voice conversion, a method based on piecewise-linear transfor-
mation. The shape of the vocal tract is generally non-linear,
so non-linear voice conversion is more compatible with human
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speech. To capture the characteristics of speech more precisely,
it is necessary to have a deeper non-linear architecture with
more hidden layers. One example of deeper VC methods is
proposed by Desai et al. [11] based on Neural Networks (NN).
Nakashika et al. [12] also proposed a VC method using speaker-
dependent restricted Boltzmann machines (RBMs) or deep be-
lief networks (DBNs [13]) to achieve non-linear deep transfor-
mation. Chen et al. [14] models joint spectral distribution of a
source and a target speaker using an RBM. Wu et al. [15] uti-
lized a conditional restricted Boltzmann machine (CRBM [16])
to obtain latent non-linear relationships between the speech of a
source and that of a target speaker. It was reported that these
non-linear VC approaches achieved relatively higher perfor-
mance than linear transformation approaches [11, 12, 15].

In this paper, we extend our earlier work in [12] to system-
atically capture time information as well as latent (deep) rela-
tionships between a source speaker’s and a target speaker’s fea-
tures in a single network, accomplished by combining speaker-
dependent recurrent temporal restricted Boltzmann machines
(RTRBMs [17]) and a concatenating NN. An RTRBM is a non-
linear probabilistic model used to capture temporal dependen-
cies in time series data, similar to the before-mentioned CRBM
and an RNN-RBM [18]. Despite its simplicity, this model does
a good job at describing meaningful sequences such as video,
music and speech. In our approach, we first train two exclu-
sive RTRBMs for the source and the target speakers indepen-
dently using segmented training data prepared for each speaker,
then train a NN using the projected features, and finally fine-
tune the networks as a single recurrent neural network. Because
the training data for the source speaker RTRBM include vari-
ous phonemes particular to the speaker, the speaker-dependent
network tries to capture the abstractions to maximally express
the training data that have abundant speaker individuality in-
formation and less phonological information. Furthermore,
the network receives a collection of time-series feature vec-
tors with the conditional models, enabling it to discover tem-
poral correlations in the high-order space. Therefore, we expect
that if feature conversion is conducted in such time-involving,
individuality-emphasized, high-order spaces, it is much easier
to convert voice features than if the original cepstrum-based
space is used.

2. Models

Our voice conversion system uses recurrent temporal re-
stricted Boltzmann machines (RTRBMs) to capture high-order
conversion-friendly features. We briefly review the RTRBM
and its fundamental model, the restricted Boltzmann machine
(RBM), in this section.
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2.1. RBM

An RBM was originally introduced as an undirected graphical
model that defines the distribution of binary visible variables
with binary hidden (latent) variables [19]. Later, this model was
extended to deal with real-valued data, a so-called Gaussian-
Bernoulli RBM (GBRBM) [13], and became a popular tool for
representing complicated distributions of actual data, such as
audio and images. In the literature of an improved GBRBM
[20], the joint probability p(v, k) of real-valued visible units

v =[vg,- - ,vI}T, v; € R and binary-valued hidden units h =
[h1,--- ,hs)T, hj € {0,1} is defined with an energy function
E(v, h) as follows:
p(v,h) = %e*”””” M
v—>b 2 T v\T
Bw,h) = |2 —c"h— (;) Wh ()
3)

7 = ZefE(”’m,
v,h
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where || - ||* denotes L2 norm. W € R/, o € R, b ¢
R and ¢ € R7*! are model parameters of the GBRBM,
indicating the weight matrix between visible units and hidden
units, the standard deviations associated with Gaussian visible
units, a bias vector of the visible units, and a bias vector of
hidden units, respectively. The fraction bar in Eq. (2) denotes
the element-wise division.

Because there are no connections between visible units or
between hidden units, the conditional probabilities p(h|v) and
p(v|h) form simple equations as follows:

p(h; =1Jv) = S(e; + WS (3)
p(vi =v|h) = N(v | b; + Wi.h,0}),

“
(&)

where W.; and W;. denote the jth column vector and the
ith row vector, respectively. S(-) and N(:|u, 0?) indicate an
element-wise sigmoid function and Gaussian probability den-
sity function with the mean y and variance 0.

For parameter estimation, the log-likelihood of a collection
of visible units £ = log ][], p(vn) is used as an evaluation
function. Differentiating partially with respect to each parame-
ter, we obtain:

oL _  vihy vih;
8W7f] - < 0.1_2 >data, < Ui2 >’model (6)
8;6 Vs V;
6[)1 = <0_7i2>data - <0_7i2>model (7)
oL
% = <hj>data - <hj>model7 (8)
J

where (-)data and (-)moder indicate expectations of input data
and the inner model, respectively. However, it is generally dif-
ficult to compute the second term, so typically, expectation of
the reconstructed data (-)recon computed by Egs. (4) and (5) is
alternatively used [13]. Using Egs. (6), (7), and (8), each pa-
rameter can be updated using stochastic gradient descent.

2.2. RTRBM

An RTRBM is an extended version of RBM proposed by
Sutskever et al. [17], and is suitable for capturing and mod-
eling temporal dependencies in sequence data. In addition to
the use of an undirected model as in an RBM, RTRBM also
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employs directed models from previous hidden units ROE-D =
R . ,hf,t*l)]T,hy*l) € {0, 1} to the current hidden
units B® = [, ... BT hg-” € {0,1} and the current
visible units v = [o{7, ... 0T 4 € R at the cur-
rent frame ¢. In this model, there are three types of parameters
to be estimated: B € R'*” (a directed weight matrix from
RtV 1o v®), ¢ € R7*’ (a directed weight matrix from
R 1o h(t)), and W € R'*7 (an undirected weight ma-
trix between v and h("). These weights are estimated using
contrastive divergence in a similar manner to RBM by maxi-
mizing the log-likelihood £ = log [, p(v™|.A®)) denoted by
A® = {o R < £}, where

® 40y _ 1 —E(® hO|pt-1)
pVAD) = 23 e )

h(t)
In our RTRBM model, the energy function E becomes:

o® _ p®

2
BE®, RO RE-D) ‘

20 o2

(10)

b =b+ Bhr!Y (11)
c =ct+conlt. (12)

The previous hidden units R(=1 in Egs. (11) and (12) are re-
placed with the mean-field values A~ as follows:

1

——)

since this approach improves the efficiency of training [17]. For
the initial values h(?), we use a zero vector in this paper.

We obtain the following partial differential equations to the
log-likelihood:

ﬁ(tfl) _ S(c(tfl) + WT(

(13)

oc  uiR{Y v RS 14
0By o2 )data — <O_7i2>model (14)
oL S (1) 2 PN
— - <h§t/ 1)h;t)>data - <h§f 1)h§t)>model~ (15)
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The other parameters related to the undirected model (W, b
and c) are also calculated from equations (6), (7) and (8) by
proper substitution of variables. The second terms in Egs. (14)
and (15) are computed as the reconstructed values similarly to
RBM.

Once the parameters are estimated, forward inference (the
conditional probability of k(") given v*) and h*~)) and back-
ward inference (the conditional probability of v® given h®
and V) are respectively written as:

®
_ v
p(h;t) = 1jo®, RtD) = S(cg_t) + W:]T-(?)) (16)

p(vzm = v|h(f’), h(t_l)) = N(v|b£t> + Wi;h(t), 0'7;2). a7

3. Voice conversion using SD-RTRBMs

In general, the less phonological and the more individuality-
emphasized features a source input includes for a speaker, the
easier it is to convert the source features to target features.
This paper proposes a voice conversion method using such
features obtained from speaker-dependent restricted Boltzmann
machines (SD-RTRBMs).

T
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Figure 1: (a) RTRBMs for a source speaker (below) and a target speaker (above), (b) our proposed voice conversion architecture
combining two speaker-dependent RTRBMs with a NN, (c) an alternative representation of (b) that can be regarded as a recurrent

neural network.

Figure 1 shows an overview of our proposed voice conver-
sion system. In our approach, we independently train RTRBMs
for each speaker beforehand as shown in Figure 1(a). Variables
z® and y“) (@®Y and y(t_l)) are acoustic feature vectors
(e.g., visible units in RTRBM), such as MFCC, at frame ¢ (at
frame ¢ — 1) for a source speaker (and a target speaker).

For the source speaker, for instance, the parameter matrices
W, B, and C, are estimated so as to maximize the prob-
ability of a T-time sequence p(z) = []; p(z™|A®). Be-
cause each unit in the hidden vector hgf) is independent from
the others, it captures the common characteristics in the visi-
ble units. The training data usually include various phonemes
and unvarying speaker-specific features; thus, we expect that
the extracted features in A’ emphasize speaker-individual in-
formation. Furthermore, since we estimate the time-related ma-
trices Bzand C jointly with the static term W, as shown in
Eq. (10) using the training data, the matrices try to capture
time-related information. This means that the obtained fea-
tures in the hidden units hgf) also help to capture time-related
speaker-individualities. An input vector «® at frame ¢ is pro-
jected into such the speaker-dependent latent space that captures
speaker-individualities. In this paper, the latent features h are
obtained using mean-field approximation as in Eq. (16). The
above discussion applies to the target speaker, and the hidden
vector for the target h<yt) is obtained in the same manner. In
our approach, we convert such individuality-emphasized fea-
tures (from h;(f) to hgf)) using a neural network (NN) that has
L + 2 layers (L is the number of hidden layers; typically, L is
0 or 1) as shown in Figure 1(b). To train the NN, we use the
parallel training set {x(t) , y<t)}tT:’0 where T is the number of
frames of the parallel data'. During the training stage of the
NN, the projected vectors of the source speaker’s acoustic fea-
tures A" are the inputs, and the projected vectors of the corre-
sponding target speaker’s features hg,” are outputs. Weight pa-
rameters of the NN {W;, dl}fzo are estimated to minimize the
error between the output n(hg)) and the target vector hi,t) as is
typical for a NN. Once the weight parameters are estimated, an

IFor sake of simplicity, we used the same parallel data for both train-
ing of the RTRBM s and the NN in our experiments (7”7 = T').
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input vector hgﬁ is converted as follows:

L

n(h{") = O m(hl”) (18)
=0

m(h) = SWih{ + dy) (19)

where OZL:O denotes the composition of L 4 1 functions. For
instance, O,_, m(2) = S(W1S(Woz + do) + d1) for a NN
with one hidden layer. To convert the output of the NN to the
acoustic features of the target speaker, we simply use backward
inference of an RTRBM using Eq. (17).

Summarizing the above discussion, a voice conversion
function of our method from a source acoustic vector ) to
a target vector y® at frame ¢ is written as:

y" = argin)axp(y“)\w(”? RV RSY) (20)
y t
L+1
=al, + Wi (DS + wiz™) @1
k=0

where a,(:> and W, denote elements of a set of dynamic param-

eters ©) = {a®"W}:

a® = {a"}i 53 = {c do, - ,dr, b} 22)
W:{Wk}ézg :{WIT7WO7"' 7WL»Wy}7 (23)

t t . . .
where cé) and bé) are a forward-inference bias vector in a

source speaker’s RTRBM and a backward-inference bias vec-
tor in the target speaker’s RTRBM obtained from Eqgs. (12) and
(11), respectively. R and hg)) are zero vectors.

The conversion function shown in Eq. (21) implies an
(L + 4)-layer recurrent neural network with sigmoid activated
functions as shown in Figure 1(c). Therefore, we can fine-
tune each parameter of the entire network consisting of the two
RTRBMs and the NN by back-propagation using the acoustic
parallel data. Eq. (21) also shows that our VC method is based
on the composite function of multiple different non-linear func-
tions considering time-series data. Therefore, it is expected that
our composite model can represent more complex relationships
than the conventional GMM-based method and other static net-
work approaches [11, 12] do.
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Figure 2: Averaged MCD with changing the architectures.

4. Experiments
4.1. Conditions

In our voice conversion experiments, we compared our method
(“SD-RTRBM”) with three conventional methods: the well-
known GMM-based approach (“GMM”), the NN-based ap-
proach (“NN”) and our previous work [12] that utilized speaker-
dependent RBMs for the pre-training of the NN (“SD-RBM”).
In [12], deeper architectures using DBNs were reported, but
we used a single-layer DBN (i.e., an RBM) for each speaker
for a comparison with our method. All of the network-based
methods (RTRBMs, a NN, and RBMs) contained four layers
(L = 0) with various numbers of hidden units as discussed
in the following section. We trained the network-based meth-
ods with a learning rate of 0.01 and momentum of 0.9, with
the number of epochs being 400, using acoustic features from
the ATR Japanese speech database [21]. The parameters of our
method and “SD-RBM” were fine-tuned after the training of the
RTRBMs and RBMs, respectively. From the database, we se-
lected a male speaker (identified with “MMY” in the database)
for the source, and a female speaker (“FTK”) for the target. 24-
dimensional MFCC features were used as an input vector, cal-
culated from STRAIGHT spectra [22] using filter-theory [23] to
decode the MFCC back to STRAIGHT spectra in the synthesis
stage. The parallel data of the source/target speakers processed
by Dynamic Programming were created from 216 word utter-
ances in the dataset, and were used for training. Note that the
parallel data were prepared for the NN and GMM methods, and
two speaker-wise RTRBMs were trained independently. For the
objective test, 15 sentences that were not included in the train-
ing data were arbitrarily selected from the database. For the
objective evaluation, we used MCD (mel-cepstral distortion) to
measure how close the converted vector is to the target vector
in mel-cepstral space.

4.2. Determination of hyper parameters

Determining the number of hidden units in the network-based
approaches and the number of mixtures in the GMM-based ap-
proach is important for a fair comparison. We also compared
with a recurrent neural network (“RNN”) whose parameters
were randomly initialized with the same architecture as our
method for a reference. In the first experiments, we changed
the number of hidden units for the network-based approaches as
24, 48, and 72, trained each method using 7' = 20, 000 frames,
and checked the performance of each method using a develop-
ment set that contains five sentences different from the test set.
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Figure 3: Averaged MCD for each method.

Table 1: Averaged MOS w.r.t. similarity for each method.

SD-RTRBM SD-RBM NN GMM
2.86 2.80 277 214

Each network-based method has a four-layer architecture; for
example, the 48-unit “NN” has 24, 48, 48, and 24 units from
the input layer to the output layer. Figure 2 depicts the aver-
aged MCD obtained from each method, showing that the wider
architecture (such as “72”) does not always provide better re-
sults than narrower architectures expect for our method. For the
GMM-based approach, we tested GMMs with 8, 16, 32, 64, and
128 mixtures and obtained the best performance from 64 mix-
tures. The best architectures for each method were used in the
remaining experiments (24 units for “SD-RBM” and “NN”, 48
units for “RNN”, 72 units for “SD-RTRBM”, and 64 mixtures
for “GMM”).

4.3. Results and discussion

Figure 3 and Table 1 summarize the experimental results, com-
paring each method with respect to objective and subjective
criteria, respectively. Figure 3 also shows the “RNN” results
for reference. For the subjective evaluation, MOS (mean opin-
ion score) listening tests were conducted, where 7 participants
listened to pairs of an original target speech signal (generated
from analysis-by-synthesis) and the converted speech signals
for each method, and then selected how close the converted
speech sounded to the original speech on a 5-point scale (5:
excellent, 4: good, 3: fair, 2: poor, and 1: bad). As shown
in Figure 3 and Table 1, our approach outperformed other con-
ventional methods in both criteria. The reason for the improve-
ment is attributed to the fact that our time-involving high-order
conversion system using RTRBMs is able to capture and con-
vert the abstractions of speaker individualities better than the
other methods. In particular, as shown in Figure 3, our approach
achieved high performance in MCD criteria. This is because the
RTRBMs modeled and captured sequence data more appropri-
ately than the other methods and alleviated estimation errors.

5. Conclusions

In this paper, we presented a voice conversion method that com-
bines speaker-dependent RTRBMs and a NN to extract time-
involving speaker-individual information from sequence data.
Through experiments, we confirmed that our approach is effec-
tive especially in terms of MCD.
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