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Abstract—Recently introduced high-accuracy RGB-D cameras
are capable of providing high quality three-dimension informa-
tion (color and depth information) easily. The overall shape of
the object can be understood by acquiring depth information.
However, conventional methods adopted this camera use depth
information only to extract the local feature. To improve the
object recognition accuracy, in our approach, the overall object
shape is expressed by the depth spatial pyramid based on depth
information. In more detail, multiple features within each sub-
region of the depth spatial pyramid are pooled. As a result, the
feature representation including the depth topological informa-
tion is constructed. We use histogram of oriented normal vectors
(HONV) designed to capture local geometric characteristics as
3D local features and locality-constrained linear coding (LLC)
to project each descriptor into its local-coordinate system. As a
result of image recognition, the proposed method has improved
the recognition rate compared with conventional methods.

I. INTRODUCTION

Object recognition means that the computer recognizes
objects from real world images by their names. It is one of
the most challenging tasks in the field of computer vision.
There are two types of object recognition tasks: instance
recognition and category recognition. Instance recognition is to
recognize known object instances. On the other hand, category
recognition is to determine the category name of an unknown
object. Regarding the achieving of human-like vision by a
computer, it is expected that any such technology will be
applied to robotic vision. Recently-introduced high-accuracy
RGB-D cameras into its field are capable of providing high
quality three dimension information (color and depth). Thus,
this paper proposes a method for multi-class object image
classification using 3D information (see Fig. 1).

Fig. 1. RGB-D information

Recent image classification systems mainly consist of the
following three parts: feature extraction using scale-invariant
feature transform (SIFT) [1], coding scheme using bag-of-
features (BoF) [2] and pooling process using spatial pyramid

matching (SPM) [3]. The BoF method for characterizing the
entire image uses the appearance frequency histogram of the
localizing features. This feature is especially robust against
spatial translations of features, although the robustness leads
to disregard of location information.

SPM is used as extensions of the BoF. The method
partitions the image into hierarchical spatial sub-regions and
computes histograms of local features from each sub-region,
as shown in Fig. 2 (typically, 2l × 2l subregions, l = 0, 1, 2).
This spatial pyramid restricted by position has shown very
promising performance on many image classification tasks.
These techniques used for 2D images is applied to 3D object
recognition without any changes. For that reason, even though
the depth information captures the overall shape of an object,
conventional methods use depth information only to extract
the local feature.
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Fig. 2. Spatial Pyramid Matching

To deal with this problem, in our proposed approach,
the overall object shape is expressed by the depth spatial
pyramid based on depth information. In more detail, multiple
features within each sub-region of the depth spatial pyramid
are pooled. As a result, the feature representation including
the depth topological information is constructed. We use not
only SIFT, but also histograms of oriented normal vectors
(HONV) designed to capture local geometric characteristics.
We also adopt locality-constrained linear coding (LLC), which
utilizes local constraints to project each descriptor into its
local-coordinate system.

This paper is organized as follows: in Sections 2, 3, 4,
and 5, the proposed method is described. In Section 6, the
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Fig. 3. System overview

performance of the proposed method is evaluated. Section 7
provides a summary and discusses future work.

II. OVERVIEW OF THE PROPOSED METHOD

Fig. 3 shows the system overview. First, the depth image
and the RGB images of each channel is created from depth
and color information. Feature points of each image are
located by grid sampling, and features (HONV and SIFT)
are extracted from each feature point. HONV is extracted
from the depth image and SIFT is extracted from the RGB
images. The extracted features are coded using LLC. Then,
multiple codes within each sub-region of the spatial pyramid
are pooled together. The pooling of the depth spatial pyramid is
additionally processed for the depth image. Finally, the pooled
features from all sub-regions are concatenated together for
classification. The classifier is trained by this concatenated
vector of training images. The test data is classified by the
trained classifier and the recognition result is output. In the
following sections, each process in the proposed method is
described in detail.

III. HISTOGRAM OF ORIENTED NORMAL VECTORS

(HONV)

The HONV is local features using depth information,
which is designed to capture local geometric characteristics
for object recognition [4]. The local 3D shape characteristics
are represented as a local distribution of a normal vector
orientation at every surface point.

The depth information captured by a depth sensor is
converted to the depth image. We denote each pixel in the
depth image as p = (x, y, d(x, y)). d(x, y) shows the distance
between the pixel position and the sensor, that is, depth
information. The normal vector at pixel p is computed by

N = (−∂d(x, y)
∂x

,−∂d(x, y)
∂y

, 1) (1)

where
∂d(x,y)

∂x and
∂d(x,y)

∂y are calculated using the finite
difference approximation, respectively. The zenith angle θ
and the azimuth angle ϕ of spherical coordinates are used
as normal vector orientation. Fig. 4 shows the relationships

among a normal vector, the zenith angle, and the azimuth
angle. Each angle is computed as

θ = tan−1
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∂d(x, y)

∂x

)2

+
(
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∂y

)2
) 1

2

(2)

ϕ = tan−1
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/
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∂x

)
(3)

X

Y

Z

�

�

Fig. 4. Zenith angle θ and azimuthal angle ϕ of a normal vector

These two angles are used to capture the overall shape of
an object in three-dimensions in a similar way to histograms
of oriented gradients (HOG) [5] in two-dimensions. Firstly, the
image is divided into cells. The center of each cell is the feature
point. For each cell, the normal vector orientation at each pixel
is quantized and voted into a 2D histogram of θ and ϕ. To
restrain spatial boundary effects, a 2D Gaussian smoothing
process is employed over adjacent cell histograms. The 2D
histogram is used as HONV feature of the corresponding
feature point.

IV. LOCALITY-CONSTRAINED LINEAR CODING (LLC)

In this paper, we adopted LLC as the coding scheme
[6]. X = [x1, x2, . . . ,xN ] ∈ R

D×N denotes a set of
D-dimensional local features xi extracted from an image.
Similarly, a codebook B = [b1, b2, . . . , bM ] ∈ R

D×M de-
notes a set of M codewords bj generated by using K-Means
algorithm. Coding schemes finally convert each feature into
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a M-dimensional code. We show the LLC method comparing
with two existing coding schemes in Fig. 5.
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Fig. 5. Comparison between BoF, SC and LLC

A. Coding descriptors in BoF

The BoF method is synonymous with solving the following
constrained least square fitting problem:

arg min
C

N∑
i=1

‖xi −Bci‖2 (4)

s.t.‖ci‖l0 = 1, ‖ci‖l1 = 1, ci ≥ 0,∀i
where C = [c1, c2, . . . , cN ] is a set of codes for X . The
cardinality constraint ‖ci‖l0 = 1 means that each code ci

contains only one non-zero element, corresponding to the
quantization id of xi. ‖ci‖l1 = 1, ci ≥ 0 means that the coding
weight for x is 1. This process can be reagarded as searching
the nearest neighbor.

B. Coding descriptors in ScSPM

In BoF, because each feature is represented by a single
codebook, the large quantization errors can occur, as shown in
Fig. 5. To improve this loss, a sparsity regularization term of
l1 norm is used instead of the restrictive cardinality constraint
‖ci‖l0 = 1 in Eq. (4) [7]. As a result of this modification,
a feature is represented by plural codebooks. Thus coding
each local feature xi becomes a standard sparse coding (SC)
problem [8].

arg min
C

N∑
i=1

‖xi −Bci‖2 + λ‖ci‖l1 (5)

The quantization error can be greatly decreased by introducing
this sparsity regularization term.

C. Coding descriptors in LLC

Generally, locality is more useful than sparsity. LLC in-
troduces a locality constraint instead of the sparsity constraint
in Eq. (5). In a word, the input feature is expressed by the
codebooks of its neighborhood. The LLC code is computed as
follows:

arg min
C

N∑
i=1

‖xi −Bci‖2 + λ‖di � ci‖2 (6)

s.t.1�ci = 1, ∀i
where � denotes the element-wise multiplication, and di ∈
R

M is the locality adapter defined as

di = exp
(

D(xi,B)
σ

)
(7)

where D(xi, B) = [D(xi, b1), . . . , D(xi, bM )]T , and
D(xi, bj) is the Euclidean distance between xi and bj . σ
is used for adjusting the weight decay speed for the locality
adapter.

To improve the recognition performance, the coding
scheme needs to generate similar codes for similar features.
However, as shown in Fig. 5, the SC process might make the
similar feature expressed in different codebooks. Thus, there is
the possibility that the correlation between the codes is lost. In
contrast, the locality adapter in LLC converts similar features
into similar codes. The LLC code captures the correlations
between similar features by sharing codebooks.

V. SPATIAL POOLING

Spatial pooling is the process of dividing an image into sub-
regions, and pooling multiple features within each sub-region.
In this paper, we use spatial pyramid (2l × 2l subregions) for
each image in 2D. Depth spatial pyramid is additionally used
to divide each depth image in 3D.

A. Depth spatial pyramid

The depth spatial pyramid is a spatial pyramid in the
depth coordinate calculated from depth information. Assuming
that the depth value is a coordinate, we divide the depth
image into sub-regions. However, the measured depth values
are unreliable and disperse unlike coordinates of a common
spatial pyramid. If the space is simply divided equally like
the spatial pyramid, the numbers of feature points within
each sub-region are biased. Therefore, we divide it into sub-
regions including equal number of points without dividing by
coordinates. Typically, m subregions (m = 0, 1, 2) are used
(Fig. 6). 3D space of an object is spatially constrained by using
the depth spatial pyramid and the spatial pyramid together. As
a result, the overall 3D shape of the object can be expressed.

������� ������� ������	

Fig. 6. Depth Spatial Pyramid

B. Pooling method

In each spatial pyramid, multiple codes within each sub-
region are pooled together. These pooled features from each
sub-region are concatenated and normalized as the final image
feature representation. We use max pooling as pooling method:

cout1 = max(cin1, . . . , cinH) (8)

where H denotes a number of feature points within the sub-
region, and the max function in a row-wise manner returns a
vector with the same size as cin1. These pooled features cout1

are concatenated as the feature vector cin. It is normalized by

cout2 = cin/‖cin‖2. (9)
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Fig. 7. Objects from the RGB-D Object Dataset

TABLE I. RECOGNITION RESULTS AND COMPARISONS(%)

Category Instance

RGB Depth RGB-D RGB Depth RGB-D

ICRA11[9] 74.3 ± 3.3 53.1 ± 1.7 81.9 ± 2.8 59.3 32.3 73.9

Kernel desc[10] 80.7 ± 2.1 80.3 ± 2.9 86.5 ± 2.1 90.8 54.7 91.2

CKM desc[11] N/A N/A 86.4 ± 2.3 82.9 N/A 90.4

HMP[12] 74.7 ± 2.5 70.3 ± 2.2 82.1 ± 3.3 75.8 39.8 78.9

ISER12[13] 82.4 ± 3.1 81.2 ± 2.3 87.5 ± 2.9 92.1 51.7 92.8

Proposed 85.3 ± 1.6 82.9 ± 2.3 89.2 ± 1.6 93.4 42.5 94.2

This cout2 is the final image feature representation. Here, for
the depth image, we concatenate two feature representations
made from spatial pyramid and depth spatial pyramid.

VI. EXPERIMENTAL EVALUATION

In this section, we evaluate our proposed method, compar-
ing with conventional methods using a benchmark dataset.

A. Experimental Conditions

We used the RGB-D Object Dataset for the experiments
[14]. It is composed of 300 objects, 51 categories and about
42,000 images containing RGB and depth information. Each
object is recorded from three viewing heights (30◦, 45◦ and
60◦ angles) while it rotates on a turntable. Fig. 7 shows the
examples of each category. For our experiments, we used
the same setup as in [9], distinguishing between category
and instance recognition. Firstly, category-level classification
experiments were conducted with 51 class labels. We randomly
selected one object from each category for the test, and trained
the classifier on the remaining objects. The averaged accuracy
and the standard deviation over 10 random trials are reported
for category recognition. Secondly, instance classification ex-
periments with 300 objects were conducted. We trained the
classifier on the images captured from 30◦ and 60◦ elevation
angles, and tested them on the images of the 45◦ angle.
We present object recognition results on the RGB-D Object
dataset with only depth features (Depth), only color features
(RGB), and with both depth and color features (RGB-D). In
our setup, the SIFT and the HONV features were extracted
from points densely located by every 4 pixels on an image,
under three scales, 8× 8, 12× 12 and 16× 16, respectively.

The codebook size was 1024. We used as the classifier multi-
class SVM (linear) to classify the vectors.

B. Experimental Results and Discussion

Table I shows the recognition results and the comparison
with conventional methods. From Table I, it can be confirmed
that the proposed method improved the accuracy. This result
shows the effectiveness of the proposed method using HONV,
LLC and depth spatial pyramid. However, only the result
with depth features (Depth) for instance recognition does
not outperform other methods. This is because the dataset
contains many objects having the same shapes but the col-
ors are different. It is generally difficult to recognize those
objects only with shape information. Especially, the proposed
method specialized for the shape representation was strongly
influenced, and therefore its recognition accuracy was not
improved. Nevertheless, the depth information contributes to
the improvement of the recognition rate when mixed up with
the color information (RGB-D).

VII. CONCLUSION

This paper presented a 3D object recognition method
using HONV, LLC and depth spatial pyramid based on depth
information. The feature representation including the topo-
logical information of shape was constructed by using depth
spatial pyramid and spatial pyramid together. Our proposed
method of expressing overall object shapes demonstrated the
better performance compared with conventional methods in
the experiments using 3D object dataset. In the future, we will
study the sub-region division method of more effective spatial
pyramid and the pooling method.

4227



REFERENCES

[1] D. G. Low, “Distinctive image features from scale-invariant keypoints,”
Journal of Computer Vision, Vol. 60, No. 2, pp. 91–110, 2004.

[2] G. Csurka, C.R. Dance, L. Fan, J. Willamowski, C. Bray, “Object
Recognition as Machine Translation: Learning aLexicons for a Fixed
Image Vocabulary,” ECCV Workshop on Statistical Learning in Com-
puter Vision, pp. 1–22, 2004.

[3] S. Lazebnik, C. Schmid and J. Ponce, “Beyond bags of features:
Spatial pyramid matching for recognizing natural scene categories,”
IEEE Computer Society Conference on Computer Vision and Pattern
Recognition, Vol. 2, pp. 2169–2178, 2006.

[4] S. Tang, X. Wang, X. Lv, T. X. Han, J. Keller, Z. He, M. Skubic, and
S. Lao, “Histogram of Oriented Normal Vectors for Object Recognition
with a Depth Sensor,” The Asian Conference on Computer Vision, 2012.

[5] N. Dalal, and B. Triggs, “Histograms of oriented gradients for human
detection,” IEEE Conference on Computer Vision and Pattern Recog-
nition, pp. 886–893, 2005.

[6] J. Wang, J. Yang, K. Yu, F. Lv, T. Huang and Y. Guo, “Locality-
constrained Linear Coding for Image Classification,” IEEE Conference
on Computer Vision and Pattern Recognition, pp. 3360–3367, 2010.

[7] J. Yang, K. Yu, Y. Gong and T. Huang, “Linear spatial pyramid match-
ing using sparse coding for image classification,” IEEE Conference on
Computer Vision and Pattern Recognition, pp. 1794–1801, 2009.

[8] H. Lee, A. Battle, R. Raina, and A. Ng, “Efficient sparse coding
algorithms,” Advances in Neural Information Processing Systems, MIT
Press, pp. 801–808, 2006.

[9] K. Lai, L. Bo, X. Ren, and D. Fox, “A Large-Scale Hierarchical
Multi-View RGB-D Object Dataset,” IEEE International Conference on
Robotics and Automation, pp. 1817–1824, 2011.

[10] L. Bo, X. Ren and D. Fox, “Depth Kernel Descriptors for Object
Recognition,” IEEE/RSJ International Conference on Intelligent Robots
and Systems, pp. 821–826, 2011.

[11] M. Blum, J. Springenberg, J. Wlfing, and M. Riedmiller, “A Learned
Feature Descriptor for Object Recognition in RGB-D Data,” IEEE
International Conference on Robotics and Automation, pp. 1298–1303,
2012.

[12] L. Bo, X. Ren, and D. Fox, “Hierarchical Matching Pursuit for Image
Classification: Architecture and Fast Algorithms,” Neural Information
Processing Systems (NIPS), 2011.

[13] L. Bo, X. Ren, and D. Fox, “Unsupervised Feature Learning for
RGB-D Based Object Recognition,” In International Symposium on
Experimental Robotics, 2012.

[14] RGB-D Object Dataset, http://www.cs.washington.edu/rgbd-dataset/

4228


