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Abstract—This paper presents an emotional voice conversion
(VC) technology using non-negative matrix factorization, where
parallel exemplars are introduced to encode the source speech
signal and synthesize the target speech signal. The input source
spectrum is decomposed into the source spectrum exemplars
and their weights. By replacing source exemplars with target
exemplars, the converted spectrum and F0 are constructed
from the target exemplars and the target F0, which is paired
with exemplars. In order to reduce the computational time, we
adopted non-negative matrix factorization using active Newton
set algorithms to our VC method. We carried out emotional
voice conversion tasks, which convert an emotional voice into a
neutral voice. The effectiveness of this method was confirmed
with objective and subjective evaluations.

I. INTRODUCTION

The human voice is rich in information. A listener perceives
not only linguistic information from a speaker’s voice but
also speaker identity, emotional information, etc. Particularly
in telephone communication, emotional information in the
human voice is important in understanding speaker’s feelings
or the various nuances of meaning. On the other hand, an
emotional voice sometimes makes things stressful for the
listener. For example, operators at call centers have to hear
angry customers’ claims all day long. If we can convert their
angry voices into neutral voices, we can reduce the stress
experienced by the operator. In this paper, we propose an
exemplar-based emotional VC approach that converts an angry
voice into a neutral voice.

In recent years, text-to-speech (TTS) techniques have been
well developed. State-of-the-art TTS methods, such as unit
selection [1] or Hidden Markov Model (HMM)-based speech
synthesis [2], can produce high-quality speech in neutral
reading styles. A concatenative approach, like unit selection,
can create a natural-sounding voice; however, it requires a
large speech corpus. A statistical parametric approach, such as
HMM-based TTS, is more flexible compared to a concatena-
tive approach. It requires less training data than unit selection
and can transform the emotion or speech styles using speaker-
adaptation techniques [3]. Emotional speech synthesis has
been adapted for both unit selection and HMM-based TTS [4];
however, some problems remain regarding the naturalness of
the synthesized speech.

Voice conversion (VC) techniques have been widely re-
searched these days because of their flexibility. VC is a voice-
to-voice technique that does not need text information in

the input data, unlike TTS. One of the most popular VC
applications is speaker conversion [5]. In speaker conversion, a
source speaker’s voice individuality is changed into a specified
target speaker’s so that the input utterance sounds as though a
specified target speaker had spoken it. A statistical approach
using Gaussian Mixture Model (GMM) is widely used in VC
and a number of improvements in this approach have been pro-
posed. In recent years, VC has been used for automatic speech
recognition (ASR) or speaker adaptation in TTS systems [6].

Emotional VC is a technique for changing emotional infor-
mation in input speech while maintaining linguistic informa-
tion and speaker identity. Some researchers adopted GMM-
based VC technique to emotional VC, but, because VC was
mainly developed for spectrum conversion, it is hard to deal
with prosody information in this framework. Because prosody
information is more important than voice quality information
in identifying emotion [7], it is a serious problem in emotional
VC.

In [8], we proposed exemplar-based VC, which is based on
the idea of sparse representation. This sparse representation-
based approach has gained interest in a broad range of signal
processing in recent years. In this approach, the observed
signal is represented by a linear combination of a small
number of atoms. In some approaches for source separation,
the bases are grouped for each source, and the mixed signals
are expressed with a sparse representation of these bases. By
using only the weights of the bases related to the target signal,
the target signal can be reconstructed. Gemmeke et al. [9]
also proposed an exemplar-based method for noise-robust
speech recognition. In that method, the observed speech is
decomposed into speech bases, noise bases, and their weights.
Then the weights of the speech bases are used as phonetic
scores (instead of the likelihoods of hidden Markov models)
for speech recognition.

In our exemplar-based VC [8], we use Non-negative Matrix
Factorization (NMF) [10], which is a well-known approach
for source separation and speech enhancement [11], [12]. In
our VC, source exemplars and target exemplars are extracted
from the parallel training data, having the same texts uttered
by the source and target speakers. The input source signal is
expressed with a sparse representation of the source exemplars
using NMF. By replacing a source speaker’s exemplar with
a target speaker’s exemplar, the original speech spectrum
is replaced with the target speaker’s spectrum. Because our
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approach is not a statistical one, we assume that our approach
can avoid the over-fitting problem and create a natural voice.

In this paper, we introduce a preliminary demonstration of
emotional VC using NMF where input emotional spectra are
converted to neutral spectra and prosody. In this paper, we
used the active-set Newton algorithm for NMF [13], which
decreases the computational time compared to conventional
NMF. The effectiveness of this method was confirmed with
objective and subjective evaluations.

The rest of this paper is organized as follows: In Section 2,
related works are introduced. In Section 3, the NMF algorithm
is explained. In Section 4, our proposed method is described.
In Section 5, the experimental data are evaluated, and the final
section is devoted to our conclusions.

II. RELATED WORKS

A. Conventional Voice Conversion

The statistical approaches to VC are most widely stud-
ied [5], [14], [15]. Among these approaches, the GMM-based
mapping approach [5] is widely used. In this approach, the
conversion function is interpreted as the expectation value of
the target spectral envelope. The conversion parameters are
evaluated using Minimum Mean-Square Error (MMSE) on
a parallel training set. A number of improvements in this
approach have been proposed. Toda et al. [16] introduced dy-
namic features and the global variance (GV) of the converted
spectra over a time sequence. Helander et al. [17] proposed
transforms based on partial least squares (PLS) in order
to prevent the over-fitting problem associated with standard
multivariate regression. There have also been approaches that
do not require parallel data that make use of GMM adaptation
techniques [18] or eigen-voice GMM (EV-GMM) [19], [20].

B. Exemplar-based Voice Conversion

In [8], we proposed exemplar-based VC using NMF. In this
approach, the input spectrum is converted by replacing the
source speaker’s exemplar with the target speaker’s exemplar.
In [21], we proposed advanced NMF-based VC using a
phoneme-categorized dictionary. By using this method, we can
improve the naturalness of the converted sound.

Our exemplar-based VC has noise robustness [8]. The noise
exemplars, which are extracted from the before- and after-
utterance sections in an observed signal, are used as the
noise dictionary, and the VC process is combined with an
NMF-based noise-reduction method. In [22], we proposed
multimodal VC using NMF. By using visual features which
are combined with audio spectra, we can improve the noise
robustness of our NMF-based VC.

On the other hand, NMF is one of the clustering methods.
In our exemplar-based VC, if the phoneme label of a source
exemplar is given, we can discriminate the phoneme of the
input signal by using NMF. In [23], we proposed assistive
technology for articulation disorders by using this function of
our exemplar-based VC. From these applications, we assume
that our exemplar-based VC using NMF is a flexible method
that can be applied to many important tasks.

In addition, the computational time of NMF-based VC is
one of its shortcomings compared to other VC methods. In
this paper, we adapted the active-set Newton algorithm for
NMF for our VC method, which has computational time that
is 8 times faster than conventional NMF.

C. Emotional Voice Conversion
Mori et al. [24] proposed an F0 synthesis method for

using subspace constraint in prosody. They assume that the
combination of the number of syllables and accent type in
Japanese determines the correlative dynamics of prosody. They
employed principal component analysis and converted a word
in each subspace, which is determined by its syllables and
accent type. Wu et al.[25] proposed a hierarchical prosody
conversion. The pitch contour of the source speech is de-
composed into a hierarchical prosodic structure consisting of
sentence, prosodic word, and sub-syllable levels.

Kawanami et al. [26] applied GMM-based spectrum con-
version to emotional spectrum conversion. Veaux et al. [27]
proposed an F0 conversion system based on GMM. However,
because these methods convert only one feature in the human
voice, some emotions were not converted well. In [28], we
proposed GMM-based emotional VC that includes both voice
quality and prosody. However, this method needs to deal with
input speech F0 for each syllable unit. This shortcoming is
not suited well to VC because, in most situations using VC,
there is no text information in the input data.

In this paper, we introduce NMF-based emotional spectrum
and prosody conversion. In this framework, an F0 syllable
split is not necessary because F0 is converted based on the
estimated exemplar of the target spectrum.

III. NON-NEGATIVE MATRIX FACTORIZATION

A. Formulation of NMF
NMF is one of the approach of sparse coding. In the idea of

sparse coding, the observed signal is represented by a linear
combination of a small number of bases.

vl ≈
∑J

j=1 wjhj,l (1)

vl represents the l-th frame of the observation (input). wj

and hj,l represent the j-th basis and the weight, respectively.
In this paper, each basis denotes the exemplar of the spectrum.
In NMF, the weight hj,l is constrained to non-negative. (1) can
be rewritten by using matrix-vector product as follows,

vl ≈ Whl. (2)

W = [w1 . . .wJ ] and hl = [h1,l . . . hJ,l]
T are the collection

of the bases and the stack of weights. In this paper, the
collection of exemplar W and the weight vector hl are called
the ‘dictionary’ and ‘activity’, respectively. When the weight
vector hl is sparse, the observed signal can be represented by
a linear combination of a small number of bases that have
non-zero weights. (2) is expressed as the inner product of two
matrices using the collection of the frames or bases.

V ≈ WH (3)
V = [v1, . . . ,vL], H = [h1, . . . ,hL]. (4)



L represents the number of the frames. H is a joint matrix of
hl, which is called ‘activities’ in this paper.
H is estimated based on NMF with the sparse constraint

that minimizes the following cost function,

f(H) = d(V,WH) + λ||H||1 s.t. H ≥ 0. (5)

The first term is the Kullback-Leibler (KL) divergence be-
tween V and WH. The second term is the sparse constraint
with the L1-norm regularization term that causes H to be
sparse. λ represents the weight of sparsity constraint. The KL
divergence is defined as

d(x,y) =
∑
d

(xd log(yd/xd)− xd + yd). (6)

B. Algorithm for NMF

When W or H is fixed, (6) is convex in H or W. In
this paper, W is fixed as the source dictionary and our
object is to estimate H. Many algorithms adopt an alternating
minimization approach.

Lee et al. [10] proposed a standard method for minimizing
(6). This method iteratively updates the following equation
which alternately induces a descent in H.

Hn+1 = Hn. ∗ (WT(V./(WHn)))

./(WT1D×L + λ1D×L) (7)

.∗ and ./ denote element-wise multiplication and division,
respectively. Because this update rule is derived from the
expectation-maximization (EM) algorithm, this method is re-
ferred as EM-NMF.

The state-of-the-art-algorithm of NMF using KL-divergence
is the active-set Newton algorithm (ASNA) proposed by
Virtanen et al. [13]. This algorithm can reach a much lower
divergence than EM-NMF, and is up to 8 times faster. In this
paper, we applied this algorithm to exemplar-based VC. The
EM-NMF algorithm requires more iteration to converge as
the dictionary size increases. ASNA adds bases to an active
set until the observation is adequately explained. In [13],
experimental results indicate that ASNA is effective to esti-
mate activities from a large-size dictionary. Since our source
dictionary size is much larger than the other method using
NMF [11], [12], ASNA is suited to our VC.

With active-set, it updates a set of active bases from a
dictionary that has non-zero weights. For initialization, the
basis that is most relative to the input observation vector is
added to the active set. Newton’s method is applied iteratively
in order to estimate the weight of the active set. In each
iteration, the most relative basis, that is not in the active set, is
added to the active set. When the weight of a basis reaches to
zero, the basis is removed. The detailed algorithm is explained
in the following section.

IV. EMOTIONAL VOICE CONVERSION USING NMF

A. Basic Idea

Fig. 1 shows the basic approach of our exemplar-based
VC, where D,L, and J represent the number of dimensions,

frames, and bases, respectively. Our VC method needs two
dictionaries that are phonemically parallel. Ws represents a
source dictionary that consists of the source speaker’s exem-
plars and Wt represents a target dictionary that consists of the
target speaker’s exemplars. These two dictionaries consist of
the same words and are aligned with dynamic time warping
(DTW) just as conventional GMM-based VC is. Hence, these
dictionaries have the same number of bases.

This method assumes that when the source signal and the
target signal (which are the same words but spoken by different
speakers) are expressed with sparse representations of the
source dictionary and the target dictionary, respectively, the
obtained activity matrices are approximately equivalent. Fig. 2
shows an example of the activity matrices estimated from
a Japanese word “ikioi” (“vigor” in English), where one is
uttered by a male, the other is uttered by a female, and each
dictionary is structured from just one word “ikioi” as the
simple example.

As shown in Fig. 2, these activities have high energies at
similar elements. For this reason, we assume that when there
are parallel dictionaries, the activity of the source features
estimated with the source dictionary may be able to be
substituted with that of the target features. Therefore, the target
speech can be constructed using the target dictionary and the
activity of the source signal as shown in Fig. 1.
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B. Dictionary Construction

In order to make a parallel dictionary, some pairs of
parallel utterances are needed, where each pair consists of
the same text. Fig. 3 shows the process for constructing
a parallel dictionary. Ws, Wt

spect, and Wt
F0 represent the

source spectrum dictionary, the target spectrum dictionary, the
target F0 dictionary, respectively. Emotional utterances are set
as source utterances and neutral utterances, which are the
same text to emotional utterances, are set as target speeches.
Spectrum envelopes and F0 are extracted from source and
target utterances using STRAIGHT analysis [29]. Spectrum
envelopes are extracted from source utterances. From the
target utterances, spectrum envelopes and basic frequencies
(F0) are extracted. Extracted features are aligned by using
Dynamic Time Wrapping (DTW) so that each feature has
the same number of frames. In order to estimate activities,
a segment spectrum, which consists of some consecutive
frames, is constructed. A segment F0, which consists of some
consecutive frames, is constructed to convert F0 precisely. A
source spectrum dictionary, target spectrum dictionary, and
target F0 dictionary are constructed by lining up each feature
extracted from parallel utterances.
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C. Estimation of Activity

Input emotional spectrum vector vs is represented by a
linear combination of basis in the activity set A using ASNA-
NMF as follows.

vs ≈
∑
j∈A

ws
jh

s
j (8)

In order to estimate activity in the active set, a Newton
algorithm is used. Before the activity estimation, the source
dictionary Ws is normalized to unity norm, and input spectra
Vs are normalized for each frame so that the sum of the
magnitudes over frequency bins equals unity.

First, the active set is initialized with a single basis from
the source dictionary minimizes (5) where the weight of each
basis that minimizes the following equation,

hs
j =

1Tvs

1Tws
j + λ

. (9)

The basis that gives the lowest weight (9) is added to the active
set and the corresponding weight is used as its activity.

The active set is updated by adding the most promising basis
not in the active set yet. In other words, it involves adding a
basis that has the most negative partial derivative of (5) with
respect to hj given as

∂f(hs)

∂hs
j

= ws
j
T(1− vs

Wshs
) + λ. (10)

The weight of the added basis is initialized with a small value
10−15. If all partial derivatives are positive, no basis is added
to the active set.

Next, the weights of bases in the active set are updated. The
gradient of the cost function (5) with respect to the activities
of the active bases is calculated as follows

∇hs
A
= Ws

A
T(1− diag(

vs

Ws
Ah

s
A

)) + λ. (11)

where ∇hs
A

, Ws
A, and hs

A represent the gradient, bases in the
active set, and the activities of bases in the active set, respec-
tively. The Hessian matrix with respect to hs

A is calculated as
follows;

HesA = Ws
A
Tdiag(

vs

(Ws
Ah

s
A)

2 )W
s
A. (12)

The weights of bases in the active set are updated using the
gradient and the Hessian as follows;

hs
A,n+1 = hs

A,n − αHes−1
A ∇hs

A
. (13)

α is a step size which is calculated as follows

α = min
rd>0

rd where r = hs
A/Hes−1

A ∇hs
A
. (14)

According to the standard Newton algorithm, the step size is
limited to 1. When the activity of the basis in the active set
becomes, the basis is removed from the active set. In order
to ensure the numerical stability in (12), an identity matrix
multiplied by small positive constant 10−9 is added to the
Hessian.

D. Spectrum and Prosody Conversion

The target spectrum dictionary Wt
spect is also normalized

for each frame in the same way the source dictionary is. By
using estimated activities Hs in (13), the target spectral feature
V̂t

spec is constructed as follows;

V̂t
spec = Wt

specH
s. (15)



Then, the magnitudes of the source signal are applied to the
normalized target spectral feature.

For F0 conversion, one single frame is selected from the
activity of each basis. Activities for F0 conversion Ĥs are
calculated as follows;

ĥs
j,l =

{
1 (hj,l = maxhs

l )

0 (otherwise)
(16)

Target F0 is constructed as follows;

V̂t
F0 = Wt

F0Ĥ
s. (17)

Then, the segment F0 is converted to a single frame in order
to construct the target emotional F0.

V. EXPERIMENTAL RESULTS

A. Database

We used a database ofemotional Japanese speech con-
structed in [26]. From the database, we chose angry and neutral
voices. A female professional narrator was asked to read the
text set with emotion.

For the test data, 61 Japanese sentences uttered in anger
were collected. Fifty sentences from the ATR Japanese pho-
netically balanced text set [30] were chosen as training data.
These 50 sentences are designed to include a minimum phone
set of Japanese. All the text are read with angry and neutral
voices. In [26], a subjective evaluation shows that the recorded
speech contains the target emotion correctly.

B. Experimental Conditions

The proposed method was evaluated on sentence-based VC
for one person speaking with emotion. We set anger as the
input emotion and neutral as the target emotion. The speech
signals were sampled at 12 kHz and windowed with a 25-
msec Hamming window every 10 msec. In the method based
on NMF, the spectrum extracted by STRAIGHT was used.
The number of spectrum dimensions was 513. For the source
spectrum, before and after 2 frames were made up as segment
spectrum and for target F0, before and after 20 frames were
made up as segment F0. The Mel-cepstral coefficient, which
was converted from the STRAIGHT spectrum, was used for
DTW in order to align temporal fluctuations.

For this paper, objective and subjective evaluations were
conducted. In both evaluations, 20 sentences were randomly
selected from the test data. In the subjective evaluation, a total
of 10 Japanese speakers took part in the test using headphones.

C. Objective Evaluation

Cepstrum distortion represented as the following equation
was used for the objective evaluation of spectrum conversion.

CepD = (20/ log 10)

√
2
∑
d

(cconvd − ctard )2 (18)

where cconvd and ctard denote the cepstrum coefficients of
original/converted and target voice. In this paper, the number
of dimensions of the cepstrum coefficients was 24. Fig. 13

shows the result of the cepstrum distortion test. As shown
in the figure, both EM-NMF-based VC and the proposed
VC method converted an emotional voice to a neutral voice
effectively.

Root mean square error (RMSE) was used for the objective
evaluation of F0 conversion. Fig. 5 shows RSME results.
As shown in the figure, both EM-NMF-based VC and the
proposed VC method converted emotional F0 to neutral F0
effectively.

Fig. 6 shows the computational times for estimating activi-
ties of one sentence for both methods. As shown in the figure,
ASNA-NMF is 8 times faster than EM-NMF.
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Fig. 7. Example of spectrogram spoken with anger

Fig. 8. Example of spectrogram spoken with neutrality

Fig. 9. Example of converted spectrogram

D. Subjective Evaluation

Figs. 7, 8 and 9 show examples of spectrogram spoken with
angry, neutral and converted voices, respectively. Figs. 10, 11
and 12 show examples of F0 spoken with angry, neutral and
converted voices, respectively.

We performed a MOS (Mean Opinion Score) test as a
subjective evaluation. The opinion score was set to a 5-point
scale (5:very neutral 4: neutral, 3: fair, 2: angry, 1: very angry).
Fig. 13 shows the results of the MOS test. “Source” implies
an input angry voice from the database. “Target” implies a
target neutral voice from the database. In “Spectrum”, only
the spectrum is converted to neutral using our method. In
“F0”, only F0 is converted to neutral using our method. In
“Proposed”, both the spectrum and F0 are converted using
the method proposed in this paper. The error bars show 95%
confidence intervals.

From “Source” and “Target” in Fig. 13, it is confirmed that
the input and target speech data contain the emotion of anger
and neutrality. The MOS of “Spectrum” and “F0” is around
2: angry. This result shows that converting the spectrum or F0
only is not effective. The MOS of “Proposed” is significantly
better than “Source” and “Target”, and its MOS is around
3 : fair. This result shows that our proposed method effectively
converted an angry voice to a neutral voice.
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E. Discussion

From the objective evaluation, NMF-based VC can convert
an emotional voice to a neutral voice. Our proposed ASNA-
NMF is a little worse in spectrum conversion than EM-
NMF, but there is no significant difference in F0 conversion.
The computational time of our proposed ASNA-NMF VC is
significantly higher than EM-NMF VC.

From the subjective evaluations, the converting spectrum of
F0 only is not effective in emotional VC. This result shows that
our VC method can convert the angry voice into the neutral
voice.



VI. CONCLUSIONS

We have introduced a preliminary demonstration of an
exemplar-based emotional VC method using NMF. In our
proposed method, the input emotional spectral feature can
be represented by smaller numbers of exemplars compared
to conventional EM-NMF-based VC. Objective and subjective
evaluations show the effectiveness of our method. In particular,
objective evaluation shows that our proposed VC method was
about 8 times faster than that EM-NMF-based method.

There is still some problem in our proposed VC approach,
however. In [31], we proposed a framework to train basis
matrices of source and target exemplars in order to reduce
computational cost. In future work, we will combine this
method and the method proposed in this paper, and then we
will investigate the optimal number of bases and evaluate the
performances.

In addition, this method has a limitation in that it can
be applied to only one-to-one voice conversation because it
requires parallel speech data having the same texts uttered
by the source and target speakers. Hence, we will research a
method that does not use parallel data.

Comparing our VC approach to the other conventional VC
methods in an emotional VC task will also our future work.
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