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Abstract—This paper proposes a novel machine-learning
framework for facial-expression recognition, which is capable of
processing images fast and accurately even without having to
rely on a large-scale dataset. The framework is derived from
Support Vector Machines (SVMs) but distinguishes itself in three
key ways. First, the measure of the samples normalization is based
on the Perturbed Subspace Method (PSM), which is an effective
way to improve the robustness of a training system. Second,
the framework adopts SURF (Speeded Up Robust Features)
as features, which is more suitable for dealing with real-time
situations. Third, we use region attributes to revise incorrectly
detected visual features (described by invisible image attributes
at segmented regions of the image). Combining these approaches,
the proposed method has the following beneficial properties. First,
the efficiency of machine learning can be improved. Experiments
show that the proposed approach is capable of reducing the
number of samples effectively, resulting in an obvious reduction
in training time. Second, the recognition accuracy is comparable
to state-of-the-art algorithms.

Keywords: facial expression recognition; SVMs; SURF; region
attributes.

I. INTRODUCTION

Facial-expression recognition is a typical multi-class clas-
sification problem in computer vision. Furthermore, since it
is one of the most significant technologies for auto-analyzing
human behaviors, it can be widely applied in many domains.
Therefore, the need for this kind of technology in various
different areas keeps propelling research forward every year.

As the main detectors, AdaBoost and SVMs, etc. are
widely used in this field of research. In 1995, Freund and
Schapire [1] supplied the AdaBoost algorithm for realizing
the learning framework of Boosted Trees, which could be
derived from Probably Approximately Correct (PAC) learning
proposed by Valiant [2]. Since then great advances have
been made based on AdaBoost, especially milestone work
by Viola and Jones [3]. But some ideal strong classifiers are
usually required a large number of training samples and very
time-consuming training experiments. Even recently, many
researchers are trying to solve these problems. Li et al . [4]
proposed a new learning SURF cascade for ameliorating boost-
ing cascade frameworks. It improved the training efficiency,
but the need for large-scale data gathering and extensive
preparations create a critical bottleneck. On the other hand,
similar problems also exist in methods based on SVMs,
because of the limitation of length (they will be not enumerated
here). Therefore, collecting many training samples and the

Fig. 1: Examples of Recognition Results

long training time leads to considerable work and difficulty for
researchers in the field of pattern recognition. Since training
is a critical infrastructure for recognition engines, the research
on training is significant for learning machines. Hence, there
is a great need to solve the problem mentioned above.

This paper brings together new normalization measures, vi-
sual features and image attributes to construct a framework for
facial-expression recognition. As almost all of the approaches
relate to vector processing, the classifier of our proposed
method is based on SVMs. There are three main approaches
with emphasis on reducing training samples and improving the
efficiency of learning machines. First, PSM is used to extend
the training data, which allows for the generation of ideal
strong classifiers without having to collect a large number of
training samples. Second, the features are described by local
multi-dimensional SURF descriptors [5], which are spatial
regions with windows and are good at processing real-time
scenes. Moreover, SURF is much faster and more efficient than
most of the existing local features algorithms. Third, the region
attributes of images are adopted to revise incorrect detection
of classifiers relying on visual features, which are represented
by feature vectors in a segmented region. Therefore, the
distinctive discriminative capability can guarantee the proposed
framework will be more robust.

In experiments, we implemented all training and detection
models in C++ on RHEL (Red Hat Enterprise Linux) 6.5 OS
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platform. The proposed method is designed for dealing with 4-
type facial expressions (Neutral, Happy, Angry and Surprised),
and some examples of recognition result are shown in Fig. 1.
The experimental results show that although using a mini-sized
database of training samples, our approach can also construct
a robust recognition system, which is comparable to the state-
of-the-art method.

In the rest of the paper, we first revisit related works in
section 2, then we describe the normalization of samples in
section 3 and the classifying framework in section 4. Section
5 elaborates on region attributes estimation. Section 6 shows
the experiments, and conclusions are drawn in section 7.

II. RELATED WORK

Facial-expression recognition is a hot research topic in
computer vision due to its many applications, and many
researchers attach great importance to this field. For instance,
Lyons et al . [6] adopted PCA and LDA to analyze facial ex-
pressions through closed experiments, and they achieved 92%
accuracy on JAFFE [7]; Bartlett et al . [8] proposed a Gabor
feature based AdaSVM method for expression recognition,
obtaining a good performance based on the use of the Cohen-
Kanade expression database [9]. However, it has been shown
that the processing speed of these approaches is too slow to
deal with real-time scenes. More recently, Anderson et al . [10]
and Chen et al . [11] proposed their approaches for real-time
expression recognition severally, but their methods required a
large amount of data for training.

Our approach enables competition that complements a
recent line of papers that use third-party software tools to
obtain mirror images of samples for training in their facial-
expression recognition systems, which we briefly review here.
To the best of our knowledge, our approach is the first to
employ the PSM directly for detectors training, but not use
any tool. Experiments show it has the greatest impact on the
performance of training efficiency because time can be saved,
which would be spent on collecting vast amounts of data
from the Internet or using third-party software to deal with
the samples for getting mirror images of these samples. In
addition, in our framework, the detector based on SVMs and
the classification function are ameliorated, which can guarantee
the results will be more reliable.

III. PSM FOR SAMPLES NORMALIZATION

In this paper, PSM is applied to the normalization of
samples. The images with visible condition changes, such as
direction and illumination changes, can be predicted by this
approach. In other words, through normalizing these samples
using our approach, we can obtain the same results as when
training a mass of their mirror images. Moreover, it is not
necessary to waste a lot of time on using third-party software
to deal with the samples, and the training time of the samples
mirror images can also be saved. Therefore, it is an effective
way to improve the robustness of the training system.

A. Training-sample Normalization

In order to reduce the noise, the size of the images is unified
by m×n pixels, and the original samples are normalized by the
mean value and variance of pixels transformation. Therefore,

the images after the normalization can be obtained according
to the following equation:

I ′(x, y) = a
I(x, y)− µ

2
√

2σ
+ b (1)

Here σ is the standard deviation, and

σ =

√√√√ 1

mn

m∑
x=1

n∑
y=1

(I(x, y)− µ)2 (2)

(a, b) is used to adjust the value of pixels (In this paper, we
used regular samples in the experiments, therefore, a was set
as 1, b was set as 0). µ is the mean value of pixels, and it
can be computed through image traversal using the following
equation:

µ =
1

mn

m∑
x=1

n∑
y=1

I(x, y) (3)

B. Changing Orientational Factors

Algorithm 1 Reconstruct Three-dimensional Face
Require:

Input: two-dimensional shape vector: S2D ∈ R2

Output: three-dimensional shape vector: S3D ∈ R3

Initialization: set β0 = 0, i = 0
while i < K or Er ≤ ε do

1. Let

S3D ⇐ s0 +
m∑
i=1

βisi

2. Alignment: S2D is aligned with the two-dimensional
shape, which is obtained by projecting the frontal three-
dimensional shape (si) onto the x− y plane.
3. Minimize

‖P (RθS3D + T )− S2D‖2

4. Reconstruct (S3D)i using the shape parameter βi.
5. Update Rθ and T with the fixed shape parameter and

Er ⇐ ‖P (RθS3D + T )− S2D‖2

6. Let
i⇐ i+ 1

end while
7. Reconstruct three-dimensional shape using the final shape
parameters.
8. Output S3D.

After the preparation in last subsection, we can thus
extend the subspace of samples through changing the facial
directions of the images. In this paper, we use the method
proposed by Chen et al . [11] to reconstruct three-dimensional
model and obtain three-dimensional data, and we indicate it
in Algorithm 1. When Er is below a threshold ε (e.g. in
Ref. [12], Gower suggested setting ε =10−4), or K land-
marks are processed over, the while loop would be stopped,
and the three-dimensional data will be output. Here β =
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(β1, β2, · · · , βm)T is the shape parameter and m is the dimen-
sionality of the shape parameter, which is used to adjust three-
dimensional shape data. S3D is a 3×n matrix, P is a 2×3 or-
thographic projection matrix, T is a 3 × n translation matrix
consisting of n translation vectors t = [tx, ty, tz]

T , and Rθ is
a 3 × 3 rotation matrix where the yaw angle is θ. In this paper,
θ is set as ±15◦, ± 30◦, ± 60◦. Thus, through Algorithm 1,
we can obtain the three-dimensional data X = (x, y, z)T from
the original images. Hence, according to the transformation
matrix formula:

X ′ = Tz · Ty · Tx · S ·Rz ·Ry ·Rx ·X (4)

we can convert the facial directions to extend the subspace
of the training samples. Here T and R are the shear mapping
transformation matrix and the rotation matrix respectively, and
S is represented by the scaling matrix.

C. Changing Illumination Attributes

The illuminative change is conducted according to the
following equation:

V
(n)
2 = V

(n)
1 +

K∑
m=1

wm · e(n)m (5)

where V1 is the changing feature, V2 is the result after the
changes, n is the dimensionality of the feature vector, w is the
weight coefficient, and e is the basis of illumination-change-
factor vectors.

In this paper, e is obtained through processing the lumi-
nance normalized rendering images by principal component
analysis (PCA), wherein, m is the principal component (m =
1, · · · , 8). The rendering images are gained by the treatment
of three-dimensional images obtained in subsection 2.2.

IV. CLASSIFYING FRAMEWORK

This section will provide the framework used for SVM
machine learning through adopting SURF features. Moreover
we will also employ the region attributes of image to revise
incorrect detection of classifiers relying on visual features. We
will describe them separately in this section.

A. Feature Description

SURF is a scale- and rotation-invariant interest point de-
tector and descriptor. It is faster than SIFT [13] and more
robust against different image transformations. In this paper,
we adopt an 8-bin T2 descriptor to describe the local feature
because it was successfully used in [4], and its more robust
representation capacity was also demonstrated.

The descriptor can be computed quickly based on sums of
two-dimensional Haar wavelet responses and we can make an
efficient use of Integral Images [3]. Suppose dx as the hori-
zontal gradient image, which can be obtained using the filter
kernel [−1, 0, 1], and dy is the vertical gradient image, which
can be obtained using the filter kernel [−1, 0, 1]T ; Define dD
as the diagonal image and dantiD as the anti-diagonal image,
both of which can be computed using two-dimensional filter
kernels diag (−1, 0, 1) and antidiag (−1, 0, 1). Therefore, 8-
bin T2 is able to be defined as v = (

∑
(|dx|+ dx),

∑
(|dx| −

dx),
∑

(|dy| + dy),
∑

(|dy| − dy),
∑

(|dD| + dD),
∑

(|dD| −
dD),

∑
(|dantiD|+ dantiD),

∑
(|dantiD| − dantiD)).

The local candidate region of the features is divided into
4 cells. The descriptor is extracted in each cell. Hence, con-
catenating features in 4 cells together yields a 32-dimensional
feature. About feature normalization, we use the same measure
with [14].

B. Classifier Construction

The classifier of our framework is built based on One-
Versus-Rest SVMs (OVR-SVMs). OVR strategy consists of
constructing one SVM per class, which is trained to distinguish
the samples of one class from the samples of all remaining
classes. Normally, classification of an unknown object is
carried out by adopting the maximum output among all SVMs.
The proposed method is based on OVR-SVMs classifier, and
implemented by re-developing liblinear SDK [15].

Usually, most of researchers estimate posterior probability
by mapping the outputs of each SVM into probability sepa-
rately. The method was proposed by Platt [16] . It applies an
additional sigmoid function:

H(ωj |fj(x)) =
1

1 + exp (cjfj(x) + dj)
(6)

fj(x) denotes the output of the SVM trained to separate the
class ωj from the other classes (total samples are M ). Then,
for each sigmoid the parameters cj and dj are optimized by
minimizing the local negative log-likelihood:

−
N∑
k=1

{pklog(hk) + (1− pk)log(1− hk)} (7)

here are N outputs of the sigmoid function, where hk is the
output of the sigmoid function with the probability pk event.
In order to solve this optimization problem, [16] applied a
model-trust minimization algorithm based on the Levenberg-
Marquardt algorithm. But in [17], Lin et al . pointed out that
there are some problems in this method, meanwhile they
proposed another minimization algorithm based on Newton’s
method with backtracking line search.

But unfortunately, there is nothing to guarantee that:

M∑
j=1

H(ωj |fj(x)) = 1 (8)

For this reason, maybe it is necessary to normalize the
probabilities as following:

H(ωj |x) =
H(ωj |fj(x))∑M

j′=1H(ωj′ |fj′(x))
(9)

Thus, we try to use another approach to estimate posterior
probability, using OVR-SVMs to exploit the outputs of all
SVMs to estimate overall probabilities. In order to achieve
this purpose, we apply the softmax function to be regarded as
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generalization of sigmoid function for the multi-SVMs case.
Thus, in the spirit of improved Platt’s algorithm [18], this paper
applies a parametric form of the softmax function to normalize
the probabilities by:

H(ωj |x) =
exp (cjfj(x) + dj)∑M

j′=1 exp (cj′fj′(x) + dj′)
(10)

and here the parameters cj and dj are optimized by minimizing
the global negative log-likelihood

−
N∑
k=1

log(H(ωk|xk)) (11)

Optimizing the parameters cj and dj is intention of ob-
taining the lowest error rate on testing dataset. The reason
of why we use the negative log-likelihood is not only it can
optimize the parameters cj and dj , but also it can be used for
comparing the various probability estimates, in other words,
it can evaluate the error rate on machine learning and reject
some unsatisfactory candidate expression regions described by
SURF features.

V. REGION ATTRIBUTES ESTIMATION

After the OVR-SVMs model classifying, we can obtain
the recognition result classified by classifiers based on visual
features. But it is necessary to make further efforts on reducing
miss-recognition, thus, we use invisible image attributes to
guarantee this purpose.

The detected face region is divided into 9×10 blocks, and
the feature vector of each block is computed. We named it
region attributes. It can be obtained after the normalization by
equalizing value and variance of the luminance, meanwhile,
the norm is set as 1. The region attribute is estimated by the
following score equation.

d =
∥∥X − X̄∥∥2 − N∑

i=1

λi
λi + δ2

(ϕi(X − X̄))2 (12)

here ϕ is eigenvector and λ is eigenvalue, δ2 is the image noise
correct divisor. When δ2 = 0, it means that the distances of all
feature vectors of the current image projecting into subspace
are unified, in the other words, the noise is negligible. X is
estimated image region attributes, and X̄ is the average feature
vector of samples. The value of distance is smaller, the score
is higher, namely, the probability of miss-detection is lower.

VI. EXPERIMENTS

In this section we will show the details of implementa-
tion, dataset, and evaluation results. The proposed method
is designed for Neutral-, Happy-, Angry- and Surprised-
expression recognition, and the recognition results are shown
in Fig. 1. We implemented all training and detection programs
in C++ on RHEL (Red Hat Enterprise Linux) 6.5 OS. In
expression recognition, the facial recognition part used the
source code of Open CV, which was based on the Viola
and Jones framework [3]. And the expressional recognition
part was implemented based on the proposed framework. The

experiments were done on the PC with Core i7-2600 3.40
GHz CPU and 8 GB RAM, and the training procedure was
fully automatic. For SURF extraction, we adopted Integral
Image to speedup the computation as described in section 3.1.
For machine learning, we built the OVR-SVMs through re-
developing liblinear software [15].

A. Experimental Dataset

In the training stage, it is necessary to construct the mini-
size training set for machine learning, which will be applied
to fix the parameters of sigmoid and softmax function. In the
testing stage, we also need to build the testing set for evalua-
tion. The easiest way to do this is to apply the same dataset to
both of the training and testing stages. But, as pointed out by
Platt [16], using the same data twice can sometimes lead to a
disastrously biased estimate. Moreover, the wide practicability
cannot be proved. Therefore, in experiments, we used different
datasets to training and testing stage separately. The details of
training set and testing set are shown as follows:

Training Database Set We used the Cohn-Kanade expression
database (CK+) [9], which is a set of frontal face images posed
by 123 people, as the training database, but not all of the people
posed each type of expression we need. Therefore, we also
collected some samples online using an image search engine.
Finally, we obtained 240 initial facial samples for each type
of emotion. All of facial samples were normalized to 90 ×
100-pixel patches and processed by histogram equalization,
no color information was used.
Testing Database Set The testing sets included two parts.
One was obtained from soap operas with a total of 10 persons
whose facial expressions were similar to the training samples.
These images of these actors and actresses are on 8 video
clips having a length of 120 seconds. We marked this set as
Test Set A. The other one was the JAFFE database [7], whose
facial samples are totally different from the CK+ database. We
mixed 213 JAFFE images randomly and one image could be
reused multiple times, which were made into 8 120-second-
long videos, and we marked this set as Test Set B.

B. Experimental Evaluation

Training Experiments The training database of all methods
was mentioned above, but only the proposed method did not
adopt any process to obtain masses of mirror samples. Hence,
it reduced a large number of samples and took only 49.8 min
to complete the whole process. Besides, the training procedure
was fully automatic. The relative data are shown in Table 1.

TABLE I: Training Efficiency Evaluation Results

Method Proposed K-means [19] LUT Ada [11]
Time cost 49.8 min 1,589 min 172.5 min

However, in order to enhance the generalization per-
formance of comparison method [19] and comparison
method [11], we had to deal with the images by some
transformations: 1) mirror reflection; 2) rotate the images by
horizontal and vertical angle ±15◦, ±30◦, ±60◦, finally, we
obtained each calss 30,720, total 122,880 facial samples for
training classifiers. Therefore, they are very time-consuming
tasks.
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Fig. 2: Green: Recognition rate for OVR-SVMs with SURF.
Purple: Recognition rate for OVR-SVMs with SIFT. Blue:
Recognition rate for OVR-SVMs with LBP. Red: Recognition
rate for OVR-SVMs with Haar-like. Feature detectors using
SURF and SIFT obtained the more accurate recognition rate,
but the feature extraction speed of SIFT was low.

Testing Experiments Fig. 2 indicates the expression-
recognition rate for different feature detectors based on our
ameliorated SVMs detector. The aim of this experiment was
evaluating the performance of the proposed detector using
different methods of feature extraction. Hence, this experiment
was done without a PSM model. Feature detectors using SURF
and SIFT obtained the more accurate recognition rates, but the
average speed of the SIFT detectors version was only 16.8 FPS.
In comparison, the speed of the SURF’s version reached 39.4
FPS. Theoretically, 16.8 FPS is too slow to deal with complex
scenes, such as real-time scenes; thus, SURF was selected as
the feature detector.

In Fig. 3, the method choices are compared, which is the
reason why the OVR-SVMs+PSM+SURF model was eventu-
ally decided on as the proposed method. We also used the
other candidate approaches to do many experiments, but this
model is the most accurate version of our detector.
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Fig. 3: Top: Recognition rate for proposed method. Middle:
Proposed method without PSM; i.e., the OVR-SVMs+SURF
model. Bottom: Only OVR-SVMs. OVRSVMs+PSM+SURF
(proposed method) is the most accurate version of our detector.

Fig. 4 shows the results of the evaluation experiments for
expressional region attributes. Fig. 4. was the result based

on testing the Test Set A videos, and Fig. 4. (b) shows the
results for Test Set B. In the experiments, we found that
after introducing the region attributes model, the recognition
accuracy of Test Set A improved approximately 7%. On the
other hand, the results of Test Set B were almost unchanged,
since the videos in Test Set B consisted of JAFFE images, and
these images had been normalized by the supplier [7]. But the
videos of Test Set A were used without any normalization.
Therefore, this approach is capable of dealing with original
images better; i.e., it is good at processing real-life videos.

TABLE II and TABLE III indicate the recognition ac-
curacies, and they show the performance of the proposed
method compared to other classifiers ( [11] is one of the
latest methods for facial expressions recognition, and it was
based on AdaBoost; [19] is a typical expressions recognition
method using K-means). TABLE II shows the recognition rate
of evaluation experiments for Test Set A. Since the races
and facial expressions of Test Set As people were similar to
those of the training samples, the region attributes model was
effective for Test Set A in which there are videos from real
life. Consequently, its accuracy was quite better than the result
shown in Table 3. The maximum recognition precision of the
proposed method was 86.3%, and the worst result was 69.3%.

TABLE II: Experimental Results for Test Set A

Proposed K-means [19] LUT Ada [11]
Happy 69.3% 52.0% 61.2%
Anger 70.9% 64.5% 50.9%

Suprise 86.3% 42.8% 68.6%
Neutral 78.3% 37.1% 65.6%

On other hand, TABLE III indicates the recognition accu-
racies for Test Set B. Due to the variation and complexity of
the facial expression across different cultures and races, the
region attributes model was not effective. The results of this
test set were not better than Test Set B’s. But on the whole, the
results of both test sets showed that the proposed method was
the more accurate version among these methods. Note that the
proposed method used training samples without any image-
mirror processing. Therefore, based on the mini-sized training
set, the proposed method can also obtain a better result,
thus this model allows for generating ideal, strong classifiers
without the need for a large amount of training samples.
Hence, under these experimental conditions, the validity of
the proposed approach was proved.

TABLE III: Experimental Results for Test Set B

Proposed K-means [19] LUT Ada [11]
Happy 62.4% 55.3% 57.7%
Anger 64.2% 59.5% 48.2%

Suprise 79.3% 44.8% 68.4%
Neutral 66.5% 32.6% 71.6%

VII. CONCLUSION

This paper brings together new normalization measures,
visual features and image attributes to construct a novel
framework that minimizes the amount of training data needed
but improves the training efficiency. It may well have broader
application in machine learning.
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Fig. 4: Evaluation Results for Expressional Region Attributes

PSM is an effective approach for alleviating the trouble
of collecting large amounts of training samples. By carrying
out a large number of experiments, we found that SURF is the
most suitable feature descriptor for our detector, and the region
attributes of images can revise some incorrectly detected clas-
sifiers caused by visual features. Combining these approaches
together, a robust expression recognition framework can be
constructed, but due to the variation and complexity of facial
expressions across different cultures and races, there are many
difficult challenges involved with using mini-sized training sets
to obtain high recognition precision. Therefore, we have to do
more work.

In future research, considering a possible implementation in
a real-life scenario, we are inclined to consider these points: 1)
We will try to use region attributes as binary latent variables,
which are incorporated into the SVMs model for inference,
and 2) we will ameliorate approaches on the construction of
SVMs to improve accuracy and to make our method capable
of handling more complex tasks.
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