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Abstract
This paper presents a voice conversion (VC) technique for noisy
environments based on a sparse representation of speech. In our
previous work, we discussed an exemplar-based VC technique
for noisy environments. In that report, source exemplars and tar-
get exemplars are extracted from the parallel training data, hav-
ing the same texts uttered by the source and target speakers. The
input source signal is represented using the source exemplars
and their weights. Then, the converted speech is constructed
from the target exemplars and the weights related to the source
exemplars. However, this exemplar-based approach needs to
hold all training exemplars (frames) and it requires high com-
putation times to obtain the weights of the source exemplars. In
this paper, we propose a framework to train the basis matrices of
source and target exemplars so that they have a common weight
matrix. By using the basis matrices instead of the exemplars,
the VC is performed with lower computation times than with the
exemplar-based method. The effectiveness of this method was
confirmed by comparing its effectiveness, in speaker conversion
experiments using noise-added speech data, with the effective-
ness of an exemplar-based method and a conventional Gaussian
mixture model (GMM)-based method.
Index Terms: voice conversion, sparse representation, non-
negative matrix factorization, noise robustness

1. Introduction
Voice conversion (VC) is generally a technique for changing
specific information in an input speech while maintaining the
other information in the utterance, such as its linguistic infor-
mation. One of the most popular applications using the VC
technique is speaker conversion, where an utterance spoken by a
source speaker is morphed so that it sounds as if it had been spo-
ken by a specified target speaker. There have also been studies
on various tasks, such as emotion conversion ([1, 2]), speaking
assistance ([3, 4]), and so on, which make use of VC techniques.

Many statistical approaches to VC have been studied ([5,
6, 7]). Among these approaches, the GMM-based mapping ap-
proach [7] is widely used, and a number of improvements have
been proposed. Toda et al. [8] introduced dynamic features and
the global variance (GV) of the converted spectra over a time
sequence. Helander et al. [9] proposed transforms based on
partial least squares (PLS) in order to prevent the over-fitting
problem of standard multivariate regression. There have also
been approaches that do not require parallel data that make use
of GMM adaptation techniques [10] or eigen-voice GMM (EV-
GMM) ([11, 12]).

However, the effectiveness of these approaches was con-
firmed with clean speech data, and the utilization in noisy envi-
ronments was not considered. The noise in the input signal is
not only output with the converted signal, but may also degrade

the conversion performance itself due to unexpected mapping
of source features. Hence, a VC technique that takes into con-
sideration the effect of noise is of interest.

Recently, approaches based on sparse representations have
gained interest in a broad range of signal processing. In the field
of speech processing, non-negative matrix factorization (NMF)
[13] is a well-known approach for source separation and speech
enhancement ([14, 15]). In these approaches, the observed sig-
nal is represented by a linear combination of a small number
of atoms, such as the exemplar and basis of NMF. In some ap-
proaches for source separation, the atoms are grouped for each
source, and the mixed signals are expressed with a sparse rep-
resentation of these atoms. By using only the weights of the
atoms related to the target signal, the target signal can be recon-
structed. Gemmeke et al. [16] also proposes an exemplar-based
method for noise robust speech recognition. In that method, the
observed speech is decomposed into the speech atoms, noise
atoms, and their weights. Then the weights of the speech atoms
are used as phonetic scores instead of the likelihoods of hidden
Markov models for speech recognition.

In our previous work [17], we discussed an exemplar-based
VC technique for noisy environments. In that report, source
exemplars and target exemplars are extracted from the parallel
training data, having the same texts uttered by the source and
target speakers. Also, the noise exemplars are extracted from
the before- and after-utterance sections in an observed signal.
For this reason, no training processes related to noise signals are
required. The input source signal is expressed with a sparse rep-
resentation of the source exemplars and noise exemplars. Only
the weights related to the source exemplars are picked up, and
the target signal is constructed from the target exemplars and the
picked-up weights. This method showed better performances
than the conventional GMM-based method in speaker conver-
sion experiments using noise-added speech data. However, this
exemplar-based approach needs to hold all training exemplars
(frames) and it requires high computation times to obtain the
weights of the source exemplars.

In this paper, we propose a framework to train the basis ma-
trices of source and target exemplars so that they have a com-
mon weight matrix. The basis matrix of the source exemplars
is trained using NMF, and then the weight matrix of the source
exemplars is obtained. Next, the basis matrix of the target ex-
emplars is trained using NMF, where the weight matrix is fixed
to that obtained from the source exemplars. By using the ba-
sis matrices instead of the exemplars, the VC is performed with
lower computation times than with the exemplar-based method.
The effectiveness of this method was confirmed by comparing
its effectiveness, in speaker conversion experiments using clean
speech data and noise-added speech data, with the effectiveness
of an exemplar-based method and the conventional Gaussian
mixture model (GMM)-based method.
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Figure 1: Voice conversion based on the sparse representation
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Figure 2: Assumption of the parallelism of source and target
dictionaries

2. Voice Conversion Based on Sparse
Representation

This section describes a VC method based on the sparse rep-
resentation [17]. In the approaches based on sparse representa-
tions, the observed signal is represented by a linear combination
of a small number of atoms.

xl ≈
J∑

j=1

ajhj,l = Ahl (1)

xl is the l-th frame of the observation.aj andhj,l are thej-
th atom and the weight, respectively.A = [a1 . . .aJ ] and
hl = [h1,l . . . hJ,l]

T are the collection of the atoms and the
stack of weights. When the weight vectorhl is sparse, the
observed signal can be represented by a linear combination of
a small number of atoms that have non-zero weights. In this
paper, the collection of atomsA and the weight vectorhl are
called ‘dictionary’ and ‘activity’, respectively. For the frame se-
quence dataX = [x1 . . .xL], Eq. (1) is expressed as the inner
product of two matrices.

X ≈ AH (2)

X = [x1 . . .xL], H = [h1 . . .hL] (3)

L is the number of the frames.
Figure 1 shows the schema of the VC method based on the

sparse representation.D, L, J are the numbers of dimensions,
frames and atoms, respectively. In this method, the parallel dic-
tionaries, which consist of source and target dictionaries having

the same size, are used to map the source signal to the target
one. The parallel dictionaries are structured from the parallel
training data, which have the same texts uttered by the source
and target speakers, and they are aligned using dynamic pro-
gramming (DP) matching.

This method assumes that when the source signal and the
target signal are expressed with sparse representations of the
source dictionary and the target dictionary, respectively, then,
the obtained activity matrices are approximately equivalent as
shown in Figure 2. Based on this assumption, the activity of
the source signal estimated with the source dictionary can be
substituted for that of the target signal. Therefore, as shown in
Figure 1, the input source signal is represented using the source
dictionary and the activity. Then, the converted speech is con-
structed from the target dictionary and the activity related to the
source dictionary.

This VC method can be combined with an NMF-based
noise reduction method. Then, the noise dictionary is extracted
from the before- and after-utterance sections in an observed sig-
nal, and the noise dictionary is concatenated with the source dic-
tionary. The noisy source signal is expressed with a sparse rep-
resentation of the source dictionary and noise dictionary. Only
the weights related to the source dictionary are picked up, and
the target signal is constructed from the target dictionary and
the picked-up weights.

However, this exemplar-based approach defines the paral-
lel dictionary with the parallel training data themselves. Hence,
this method needs to hold all training exemplars (frames) and
it requires high computation times to obtain the weights of the
source exemplars. In conventional NMF-based noise reduction
methods, the dictionaryA is not defined with the training ex-
emplars, but with much fewer bases. These bases are trained
using the NMF in advance. However, when the basis matri-
ces of source exemplars and target exemplars are trained using
the NMF independently, the parallelism of the source and target
dictionaries shown in Figure 2 is lost.

Therefore, in this paper, we propose a framework to train
the basis matrices of source and target exemplars so that they
have a common weight matrix. By using the basis matrices in-
stead of the exemplars, the VC is performed with lower compu-
tation times than with the exemplar-based method.

3. Proposed Method
3.1. Training of the Parallel Basis Matrices

This section describes the framework to train the basis matrices
of source and target exemplars. We optimize the source basis
matrix As and target basis matrixAt so that when the source
signal and target signal are expressed with sparse representa-
tions ofAs andAt, respectively, the obtained activity matrices
are equivalent, as shown in Figure 2.

Table 1 shows the algorithm of the training of the parallel
basis matrices. At first, for the training source data (exemplars)
Xs, the basis matrixAs and the activity matrixHs are opti-
mized using the NMF with the sparse constraint [16]. In the
framework of the NMF with the sparse constraint, it minimizes
the following cost function:

d(Xs,AsHs) + ||(λ1(1×L)). ∗Hs||1 s.t. As, Hs ≥ 0. (4)

Here, .∗ and1 are an element-wise multiplication and an all-
one vector, respectively. The first term is the Kullback-Leibler
(KL) divergence betweenXs andAsHs. The second term is
the sparse constraint with the L1-norm regularization term that
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Table 1: Algorithm of the training of the parallel basis matrices

Training of source basis matrixAs

• Set source training exemplars toXs

• OptimizeAs andHs by Eq. (5) and (6)
Training of target basis matrix At

• Set target training exemplars toXt

• Fix the activity matrix toHs, and optimizeAt by Eq. (8)

causesHs to be sparse.λ is the weight of the sparse constraint.
As andHs minimizing (4) are estimated iteratively applying
the following update rules:

As
n+1 = As

n. ∗ (Hs
n(Xs./As

nHs
n)T ./Hs

n1(1×D))T (5)

Hs
n+1 = Hs

n. ∗ (AsT

n (Xs./(As
nHs

n)))

./(AsT

n 1(J×L) + λ1(1×L)) (6)

where./ and1 are an element-wise division and an all-one ma-
trix, respectively.

Next, using the activity matrixHs obtained by Eq. (6), the
target basis matrixAt of the training target exemplarsXt is
optimized. Then,At is optimized so that the activity matrix is
equivalent toHs, i.e. At is optimized to minimize the follow-
ing cost function:

d(Xt,AtHs) s.t. At ≥ 0. (7)

In this optimization, the activity matrix is fixed toHs, and only
At is updated by the following update rule:

At
n+1 = At

n. ∗ (Hs(Xt./At
nHs)T ./Hs1(1×D))T .(8)

3.2. Voice Conversion of Noisy Source Signal

3.2.1. Estimation of Activity from Noisy Source Signal

From the before- and after-utterance sections in the observed
(noisy) signal, the exemplars (frames) of the noise are extracted,
and the noise dictionary is structured from the noise exemplars
for each utterance. For this reason, no training processes re-
lated to noise signals are required. In the approach based on the
sparse representation, the spectrum of the noisy source signal
at framel is approximately expressed by a non-negative linear
combination of the source dictionary, noise dictionary, and their
activities.

xl = xs
l + xn

l

≈
J∑

j=1

as
jh

s
j,l +

K∑

k=1

an
khn

k,l

= [AsAn]

[
hs

l

hn
l

]
s.t. hs

l ,h
n
l ≥ 0

= Ahl s.t. hl ≥ 0 (9)

xs
l andxn

l are the magnitude spectra of the source signal and
the noise, respectively.As, An, hs

l andhn
l are the source dic-

tionary (basis matrix) trained by Eq. (5), noise dictionary (ex-
emplars), and their activities at framel, respectively. Given the
spectrogram, (9) can be written as follows:

X ≈ [AsAn]

[
Hs

Hn

]
s.t. Hs,Hn ≥ 0

= AH s.t. H ≥ 0. (10)

In order to consider only the shape of the spectrum,X, As

andAn are first normalized for each frame, basis or exemplar
so that the sum of the magnitudes over frequency bins equals
unity.

M = 1(D×D)X

X ← X./M

A ← A./(1(D×D)A) (11)

The joint matrixH is estimated based on NMF with the sparse
constraint that minimizes the following cost function:

d(X,AH) + ||(λ1(1×L)). ∗H||1 s.t. H ≥ 0. (12)

The weights of the sparsity constraints can be defined for each
basis and exemplar by definingλT = [λ1 . . . λJ . . . λJ+K ]. In
this paper, the weights for source bases[λ1 . . . λJ ] were set to
0.15, and those for noise exemplars[λJ+1 . . . λJ+K ] were set
to 0. H minimizing (12) is estimated iteratively applying the
following update rule:

Hn+1 = Hn. ∗ (AT (X./(AH)))

./(1((J+K)×L) + λ1(1×L)). (13)

3.2.2. Target Speech Construction

From the estimated joint matrixH, the activity of source signal
Hs is extracted, and by using the activity and the target dictio-
nary, the converted spectral features are constructed. Then, the
target dictionary is also normalized for each basis in the same
way the source dictionary was.

At ← At./(1(D×D)At) (14)

At is the target dictionary (basis matrix) trained by Eq. (8).
Next, the normalized target spectral feature is constructed, and
the magnitudes of the source signal calculated in (11) are ap-
plied to the normalized target spectral feature.

X̂t = (AtHs). ∗M (15)

In this paper, the input source feature is expressed using the
magnitude spectrum calculated by STFT because the magni-
tude spectrum is compatible with the NMF-based noise reduc-
tion. On the other hand, the converted spectral feature is ex-
pressed as a STRAIGHT spectrum [18] that is compatible with
the speech synthesis. The target speech is synthesized using
a STRAIGHT synthesizer. Then, F0 information is converted
using a conventional linear regression based on the mean and
standard deviation.

4. Experiments
4.1. Experimental Conditions

The proposed VC technique was evaluated by comparing it
with an exemplar-based method [17] and a conventional GMM-
based method [7] in a speaker conversion task using clean
speech data and noise-added speech data. The source speaker
and target speaker were one male and one female speaker,
whose speech is stored in the ATR Japanese speech database,
respectively. The sampling rate was 8 kHz.

Two hundred sixteen words of clean speech were used
to construct parallel dictionaries in the methods based on the
sparse representation and used to train the GMM in GMM-
based method. In the exemplar-based method, the number of
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Figure 3: Mean opinion scores (MOS) for each method

exemplars of source and target dictionaries was 58,426. Then,
in our proposed method, 1,000 bases were trained from the ex-
emplars for each dictionary. Twenty-five sentences of clean
speech or noisy speech were used to evaluate. The noisy speech
was created by adding a noise signal recorded in a restaurant
(taken from the CENSREC-1-C database) to the clean speech
sentences. The SNR was 15 dB. The noise dictionary is ex-
tracted from the before- and after-utterance section in the eval-
uation sentence. The average number of exemplars in the noise
dictionary for one sentence was 110.

In the methods based on the sparse representation, a 257-
dimensional magnitude spectrum was used as the feature vec-
tors for input signal, source dictionary and noise dictionary, and
a 513-dimensional STRAIGHT spectrum was used for the tar-
get dictionary. The number of iterations used to estimate the
activity was 500. In the GMM-based method, the1st through
40th linear-cepstral coefficients obtained from the STRAIGHT
spectrum were used as the feature vectors. The number of mix-
tures was 64.

4.2. Experimental Results

We performed an opinion test on the naturalness and speaker
individuality of the converted speech. In the opinion test, the
opinion score was set to a 5-point scale (5: excellent, 4: good,
3: fair, 2: poor, 1: bad). The tests were carried out with 7 sub-
jects. For the evaluation of naturalness, each subject listened
to the converted speech and evaluated how natural the sample
sounded. For the evaluation of speaker individuality, each sub-
ject listened to the target speech. Then the subject listened to
the converted speech and evaluated how similar the converted
speech and the target one.

Figure 3 shows the mean opinion scores (MOS) for each
method. The error bars show 95% confidence intervals. As
shown in this figure, when clean speech data was used, the per-
formances of the three methods were not so different in both
evaluation criteria. However, when noisy speech data was used,
the performances of GMM-based method degraded consider-
ably especially in naturalness. This might be because the noise
caused unexpected mapping in the GMM-based method, and
the speech was converted with a lack of naturalness. On the
other hand, the degradations of the performances of the VC
methods based on the sparse representation were less than those
of GMM-based method. The performances of the proposed
method were slightly lower than that of the exemplar-based
method when noisy speech data was used. However, for obtain-

Table 2: Spectral distortion improvement ratio (SDIR) [dB] for
noisy speech

Exemplar-based Proposed GMM-based
SDIR [dB] 3.8 3.7 3.2

ing the activity matrix, the computation time of the proposed
method (about 30 seconds for 1 sentence on Intel Core i7 2.80
GHz personal computer) was about 30 times faster than that of
the exemplar-based method (about 910 seconds).

Table 2 shows the spectral distortion improvement ratio
(SDIR) [dB] for noisy input source signal. The SDIR is defined
as follows.

SDIR[dB] = 10 log10

∑
d |Xt(d)− X̂t(d)|2∑
d |Xt(d)−Xs(d)|2 (16)

Here,Xs, Xt and X̂t are normalized so that the sum of the
magnitudes over frequency bins equals unity. As shown in
this table, the distortion improvements of the methods based
on the sparse representation were higher than GMM-based
method. The distortion improvements of the proposed method
was slightly lower than that of the exemplar-based method.

5. Conclusions
In this paper, we discussed a noise-robust VC technique based
on sparse representation. We proposed a framework to train the
basis matrices of source and target exemplars so that they have
a common activity matrix. The basis matrix of the source ex-
emplars is trained using the NMF. Then, the basis matrix of the
target exemplars is trained using the NMF, where the weight
matrix is fixed to that obtained from the source exemplars. By
using the basis matrices instead of the exemplars, the VC is per-
formed with lower computation times than with the exemplar-
based method. When a noisy input signal is converted to the
target signal, the noise exemplars are extracted from the before-
and after-utterance sections in an observed signal. The noisy
signal is expressed with a sparse representation of the source ba-
sis matrix and noise exemplars. The target signal is constructed
from the target basis matrix and the activity matrix related to
the source basis matrix.

In comparison experiments between the proposed method,
an exemplar-based method and a conventional GMM-based
method, the proposed method showed better performances than
GMM-based method when evaluating noisy speech. The perfor-
mances of the proposed method were slightly lower than that of
the exemplar-based method when noisy speech data was used.
But for obtaining the activity matrix, the computation time of
the proposed method was about 30 times faster than that of the
exemplar-based method.

However, the proposed method still requires higher compu-
tation times than that of GMM-based method. While our pro-
posed method took about 30 seconds for 1 sentence to convert
speech features, the GMM-based method spent about 1 second
to do this. In future work, we will investigate the optimal num-
ber of bases and evaluate the performances under other noise
conditions. We will also try to introduce dynamic information,
such as segment features. In addition, this method has a limi-
tation in that it can be applied to only one-to-one voice conver-
sation because it requires parallel speech data having the same
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texts uttered by the source and target speakers. Hence, we will
investigate a method that does not use parallel data. Future work
will also include efforts to study other noise conditions, such as
a low-SNR condition, and apply this method to other VC appli-
cations.
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