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1. Introduction

Super-resolution techniques are generally divided into two
approaches: example-based methods and statistical meth-
ods. Example-based methods [1] simply use (or select in
sparce coding [2]) pairs of low-resolution and high-resolution
patches for the reconstruction. In this approach, a low-
resolved input image is decomposed into patches, each of
which is compared with the patches in the database and
replaced with the corresponding high-resolved patch. Al-
though this approach produces relatively less-deteriorated
images, it is not based on any statistical models and lacks
versatility. For the statiscical approach, various methods
have been proposed so far: the eigen-space BPLP [3], the
MRF-based approach [4], a GMM-based approach [5], and
so on. Some of these statistical approaches rely on the
training of the correspondence relationships between low-
resolved/high-resolved images. Therefore, if one wants to
enlarge an image with the desired scale, the relationships
between the low and high resolution with that scale need to
be trained beforehand.

Meanwhile, Hinton et el. introduced an effective training
algorithm of Deep Belief Nets (DBNs) in 2006 [6], and the
use of DBNs rapidly spread in the field of signal process-
ing with great success. DBNs are probabilistic generative
models that are composed of multiple layers of stochastic
latent variables, and have a greedy layer-wise unsupervised
learning algorithm. DBNs are not only used for classifi-
cation tasks, but also for the completion of an image or
for collaborative filtering. Eslami et el. adopted a type of
DBNs (called ShapeBM) to complete the missing region in
an image [7]. Salakhutdinov et el. used 2-layer DBNs (i.e.,
Restricted Boltzmann Machines; RBMs) for collaborative
filtering [8], which has the benefit of the DBNs dealing with
missing data.

In this paper, we propose a novel super-resolution method
using DBNs to restore the missing high-frequencies (Fig. 1),
motivated by the above-mentioned characteristics of DBNs.
In our approach, a low-resolved image is first scaled up
to the prescribed size by using bicubic interpolation, and
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Fig. 1 System flowchart of our proposed method.

the high-frequency information is estimated by inference of
trained DBNs. The networks are trained only using high-
resolved image patches in a multiple-layer-wise unsupervised
manner, so as to find the deep relational connections be-
tween spatial frequencies. Thus, we expect that the self-
trained DBNs capture the high-order dependencies of low-
frequencies and high-frequencies, and complete the high-
frequency components of a low-resolved image, assuming
that the low-frequency components are the same.

2. High-frequency restortion

In this paper, we employ Deep Belief Nets (DBNs) for
capturing the co-occurrence relationships among DCT coef-
ficients based on joint probability, expecting that the DBNs
can capture even higher-order connections between the fre-
quencies. Once the networks are constructed, the lost high-
frequency components can be restored based on the co-
occurrence.

In the literature of RBMs, the joint probability p(v, h)
of real-valued visible units v = [v1, · · · , vI ]T , vi ∈ N (0, 1)
(note that the training data should be first normalized for
each dimension to have zero mean and unit variance) and
binary-valued hidden units h = [h1, · · · , hJ ]T , hj ∈ {0, 1}
is defined as:

p(v, h) =
1
Z

exp(−E(v, h)) (1)

E(v, h) =
1
2
|v|2 − cT h − vT Wh (2)

where, Z is the normalizing constant, and W ∈ RI×J ,
c ∈ RJ×1 are a weight matrix between visible units and
hidden units, a bias vector of hidden units, respectively.
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Fig. 2 Four input images. Only (I) is used for training, and the
others for testing.

Since there are no connections between visible units or
between hidden units, the conditional probabilities p(h|v)
and p(v|h) form simple equations as follows:

p(hj = 1|v) = σ(cj + vT W:j) (3)

p(vi|h) = N (Wi:h, 1) (4)

where W:j and Wi: denote the j-th column vector and the i-
th row vector, respectively. σ(x) indicates sigmoid function,
i.e. σ(x) = 1/(1 + exp(−x)). For the parameter estimation,
the log likelihood of visible units is used as an evaluation
function. Although the gradient is intractable to compute,
contrastive divergence [6] can be used to approximate it.

In the training of DBNs, the hidden units of the current
stack are regarded as visible units in the next layer. This
procedure is repeated layer-by-layer until the highest layer.

Once the weights of the networks are estimated, the
almost-zero-valued high-frequency components are restored
given a low-resolved bicubic-interpolated image. At this
point, the values of the high-frequency components are in-
ferred by using Eq. (3) and (4).

3. Experiments

For the training of Deep Belief Nets (DBNs), we used
image (I) shown in Fig. 2, whose size is 512 × 512. We par-
titioned the image into patches to have the size of 16 × 16,
allowing overlaps. Each patch (in total 15625 patches) was
transformed by 2-dimensional DCT, normalized, and then
fed to DBNs. We trained DBNs with a learning rate of 0.01
for 500 epochs, which have 2-hidden layers, 400 hidden units
for the first layer and 200 hidden units for the second layer.

For testing, 3 images (Fig. 2(II)(III)(IV)) were reduced
by half (s = 2) from 512×512 in the horizontal and vertical
directions, and enlarged by two times using our proposed
method.

To evaluate the efficacy of our method, we compared it
with 2 conventional methods (sparse-coding [2] and GMM
[5]) and bicubic interpolation with 2 measures (PSNR and
SSIM [9]). Given an original image Y (high-resolved im-
age) and its processed image E, PSNR and SSIM measure
the quality of the processed image. The larger the values of
PSNR and SSIM are, the higher the quality of the images
is supposed to be. For reference, we also compared within
our methods to different architecture of DBNs: 1-layer, 400
hidden units (i.e. RBMs).

Table 1 summarizes the experimental results, compar-
ing our proposed method with bicubic interpolation, GMM,
and Sparse-Coding. As shown in Table 1, the proposed

Table 1 Comparison of super-resolution methods using PSNR
and SSIM.

Image Method PSNR SSIM
Bicubic 36.43 0.8816

Sparse-Coding 37.71 0.9084
(II) GMM 37.98 0.9272

Proposed(RBMs) 38.52 0.9289
Proposed(DBNs) 38.60 0.9308

Bicubic 33.07 0.8015
Sparse-Coding 34.20 0.8608

(III) GMM 35.59 0.9154
Proposed(RBMs) 35.73 0.8639
Proposed(DBNs) 37.60 0.9067

Bicubic 38.15 0.8977
Sparse-Coding 39.68 0.9240

(IV) GMM 40.83 0.9460
Proposed(RBMs) 40.40 0.9452
Proposed(DBNs) 41.31 0.9548

method using DBNs performed best for each test image with
either measure. Furthermore, 2-hidden-layer DBNs (Pro-
posed(DBNs)) outperformed 1-hidden-layer DBNs (Pro-
posed(RBMs)). The architecture of the deep DBNs captures
higher-order dependencies between low and high frequencies
better than the other methods including shallow DBNs, and
we consider that this ends up with the preferable results.

4. Conclusion

In this work, we proposed the use of Deep Belief Nets
(DBNs) to tackle super-resolution, replacing the task with
the completion problem of the missing data. In our ap-
proach, the missing high-frequency components in a low-
resolved image are restored using self-trained DBNs in the
spatial frequency domain. In our experiments, we showed
the efficacy of the proposed method, in comparison to con-
ventional methods.
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